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Abstract
Applications of machine learning have become increasingly common in recent years.
For instance, navigation systems like Google Maps use machine learning to better
predict traffic patterns; Facebook, LinkedIn, and other social media platforms use
machine learning to customize user’s news feeds. Central to all these systems is user
data. However, the sensitive nature of the collected data has also led to a number
of privacy concerns. Privacy-preserving machine learning enables systems that can
perform such computation over sensitive data while protecting its privacy.

In this dissertation, we focus on developing efficient protocols for machine learn-
ing as a target analytics application. To incorporate privacy, we use a multi-party
computation-based approach. In multi-party computation, a number of non-colluding
entities jointly perform computation over the data and privacy stems from no party
having any information about the data being computed on. At the heart of this disser-
tation are three frameworks – SecureNN, Falcon, and Ponytail – each pushing
the frontiers of privacy-preserving machine learning and propose novel approaches to
protocol design. SecureNN and Falcon introduce, for the first time, highly effi-
cient protocols for computation of non-linear functions (such as rectified linear unit,
maxpool, batch-normalization) using purely modular arithmetic. Ponytail demon-
strates the use of homomorphic encryption to significantly improve over prior art in
private matrix multiplication. Each framework provides both significant asymptotic
as well as concrete efficiency gains over prior work by improving computation as well
as communication performance by an order of magnitude.

These building blocks – matrix multiplication, rectified linear unit, maxpool,
batch-normalization – are central to machine learning and improvements to these
significantly improve upon prior art in private machine learning. Furthermore, each
of these systems is implemented and benchmarked to reduce the barrier of deploy-
ment. Uniquely positioned at the intersection of both theory and practice, these
frameworks bridge the gap between plaintext and privacy-preserving computation
while contributing new directions for research to the community.
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Chapter 1

Introduction

“I really believe that we don’t have to make a trade-off between security and privacy.
I think technology gives us the ability to have both.”

– John Poindexter

Machine Learning (ML), a specialization of a broader scientific field called artificial
intelligence (AI), has transformed our technological landscape in the last decade.
While science fiction often portrays it as a dystopian world ruled by robots, in reality,
ML encompasses a wide range of systems from Google’s search algorithm to self-
driving cars. ML is actively used in many sectors of society – technology, healthcare,
and commerce – due to its potential in transforming services, improving scalability of
businesses, and impressive technological breakthroughs. However, most applications
of ML require huge amounts of data in order to learn and provide “intelligent” services.

Not independent of this machine learning revolution is the advent of massive
amounts of data collection – in particular about users’ behavior which is frequently
the target of ML services. The ubiquity of personal data in the digital world has
rendered user information accessible as never before. This proliferation also poses
significant privacy risks due to the lack of transparency on the use of such data as
well as the lack of mechanisms to provide users with control over their data. Health
records, banking details, and login credentials are just some examples of such sensitive
data. The use of location and sensor data over smartphones, search queries, and even
social media posts in targeted services have led to a new wave of privacy awareness.
Finally, the rise of IoT devices brings about its own set of privacy concerns. The
possibility of voice assistants such as Alexa, Google Home, or Siri constantly listening
in has further expanded the surface area of privacy attacks.

Our society sits at the nexus of developments in technology that enables us to
transition into a better digital ecosystem. We face a range of legal and ethical dilem-
mas in the quest for a balance between societal advances and fundamental privacy
rights. Restricting the collection of such private data can limit the societal benefits
we can obtain from analyzing this data. It can also hinder major technological ad-
vances – the recent revolution in ML would arguably not have happened as it thrives
on data.
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Systems, such as those developed in the course of this dissertation, revolve around
the paradigm of private computation – a method of computation where the data
on which the computation is being performed can be kept private or confidential.
These technological solutions provide a solution to the conundrum of enabling new
applications that rely on sensitive data while at the same time ensuring appropriate
levels of privacy for the data. While there exists a number of paradigms to achieve the
goals of confidential computing, the naive use of these existing paradigms suffers from
significant overheads in computation and communication. Thus, to truly transition
into a privacy-conscious world, reducing these overheads is imperative.

1.1 A Vision for a Privacy-Conscious World
I envision a world where our digital infrastructure is re-designed with a privacy-first
approach. The current digital norms implicitly require users to surrender their privacy
in exchange for services. Such a re-design would allow users to subscribe to complex
machine learning services such as location-based services and health trackers without
the complete surrender of their sensitive data; allow organizations such as hospitals
and banks to run collaborative services such as rare-disease research and anti-money
laundering without disclosing their proprietary data; and would also enable new ap-
plications such as outsourcing of sensitive data for storage such as cryptographic keys
in a manner that preserves privacy.

Achieving these goals requires advances on many fronts: more efficient crypto-
graphic protocols, better system design, “privacy-friendly” hardware, as well as better
policy design and adoption. Other than the tools to work over sensitive data, such an
effort would more broadly require regulations enforcing such privacy protection and
transparent usage of data. It is important to remember that a private computation
is typically more expensive in terms of computation or the run-time, as compared to
a plaintext (or non-private) computation. For instance, a state-of-the-art work [93]
using homomorphic encryption (one technique for private computation) is several
orders of magnitude slower as well as computationally resource-intensive compared
to the same computation without privacy. Similarly, a state-of-the-art work [111]
using multi-party computation (another technique for private computation) is more
promising but still about 2 orders of magnitude slower than plaintext computation
(non-private computation). For this reason, efforts aimed at designing efficient proto-
cols for fundamental privacy-preserving building blocks are critical to the foundation
of such an ecosystem.

To this end, this dissertation focuses on designing novel, efficient protocols to en-
able privacy-preserving computations. For instance, Chapters 3, 4 contain the state-
of-the-art protocols for performing a comparison of two numbers privately. Simi-
larly, in Chapter 5, we will see the most efficient protocol for performing matrix
multiplication privately. These building blocks – matrix multiplication, comparison
– among others, are central to machine learning and more generally to our entire
digital ecosystem and would be critical to a privacy-conscious vision of the world.
Any improvements to these protocols are further amplified in practice due to the

2



repetitive dependence of higher-level functionality on these basic primitives. This
dissertation proposes novel ways of performing these computations and eliminating
expensive cryptographic primitives, ideas which have transformative capabilities for
other lines of work in privacy-preserving technologies. In this way, this dissertation
significantly reduces the performance gap between privacy-preserving and plaintext
computations.

1.2 Privacy Advocate’s Toolkit
In designing privacy-focused systems, it is imperative to have a clear understanding
of “What assumptions underlie the privacy of the system?” as well as ”What are the
privacy guarantees provided by the system?”. The assumptions are what allow one to
rigorously argue for the privacy of the system, and the guarantees are what provide
semantic meaning to the notion of privacy.

In this frame of reference, there are a number of mathematical techniques that
allow the design of privacy systems – multi-party computation (MPC) [115, 116, 54,
12], homomorphic encryption (HE) [52, 47, 17], differential privacy (DP) [43, 42,
67, 51], and trusted hardware based solutions [100, 2]. Each technique has its own
set of assumptions and privacy guarantees from which the security/privacy of the
end-to-end system is argued. Each technique also has its own overhead for achieving
privacy. Research progress on reducing this overhead has significantly improved the
performance of these techniques since their inception.

For instance, HE (described further in Section 2.3) requires standard crypto-
graphic assumptions but suffers from high computation overhead. MPC (described
further in Section 1.3 and Section 2.2) also relies on standard cryptographic assump-
tions and in addition requires non-collusion assumptions. These techniques provide
standard cryptographic notions of privacy – provide “encryption-like” privacy assum-
ing the adversary is computationally bound. Differential privacy on the other hand
provides its own privacy guarantee – the presence or absence of any individuals’ data
in a database has limited effect on the queries performed on the database, providing
an intuitive notion of privacy. Similarly, trusted hardware based techniques require,
as the name suggests, a trust assumption on the hardware. Each technique has its
pros and cons and in this dissertation, we focus on solutions based on MPC and HE.

1.3 A Brief History of Multi-Party Computation
MPC, also known as Secure Multi-Party Computation (SMC), is a sub-discipline of
cryptography that allows a set of parties to compute a function of their inputs while
keeping these inputs private. The classic example of this is called the Yao’s millionaire
problem introduced in a seminal work by Andrew Yao in 1982 [116] – “Two millionaires
wish to know who is richer; however, they do not want to find out inadvertently any
additional information about each other’s wealth.” Assuming the two millionaires do
not have a common trusted friend, i.e., a trusted third party, we fall in the realm
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of MPC. The two millionaires can run a protocol among themselves, at the end of
which both of them will learn a single bit of information: which millionaire is richer.
More generally, a MPC set-up assumes that there are n parties P1, P2, · · · , Pn each
having an input x1, x2, · · · , xn. The parties would like to jointly compute a pre-
determined function f(x1, x2, · · · , xn) of their inputs in a manner that preserves the
privacy of each input. In the above example of the millionaire’s problem, n = 2,
the private inputs x1, x2 are the salaries of the two millionaires and the function
f(x1, x2) = x1 ≥ x2 is simply a comparison function.

Soon after laying the foundations of MPC in his seminal paper in 1982, Andrew
Yao introduced the first set of protocols for MPC called Garbled Circuits [115, 116].
However, for the next couple of decades, secure computation remained of theoretical
interest with few efforts focused on practical deployments. This changed around the
turn of the millennium when the algorithmic improvements coupled with the rise of
computing infrastructure and improved communication led to efforts at building prac-
tical systems for general-purpose MPC. Fairplay [79] was the first demonstration of
a generic secure function evaluation system. It compiled a desired two-party privacy-
preserving program from a high-level language to an executable that can be run by the
two parties as a MPC protocol. However, there were systemic limitations to the per-
formance and scalability of such a system that restricted its use to toy programs. For
example, a single instance of the classic millionaire problem can be solved1 in about
1.25s (this is about 7 orders of slower than non-private comparisons). However, since
then, advances in protocol design, computation and communication infrastructure,
and hardware support have improved the speed of MPC protocols by over 6 orders of
magnitude. For example, Falcon, a state-of-the-art protocol described in Chapter 4
takes about 1.78µs to perform the same single comparison. This tremendous progress
has enabled MPC to scale to much larger and interesting applications.

This dissertation is focused on enabling private computation of neural networks
(NNs) as the target application. This focus allows one to design specialized protocols
that are more efficient than generic MPC protocols which can be used to compute
arbitrary functions. In the next section, we will see some concrete use cases of MPC
techniques applied to the domain of ML.

1.4 Target Applications of MPC
NNs have proven to be a very effective tool for producing predictive models that are
widely used in applications such as healthcare, image classification, finance, and so
on. Private computation can assist both private training as well as private inference
in ML. It is well known that the accuracy of ML models gets better as the amount
of training data increases [118]. Large amounts of training data can be obtained by
pooling in data from multiple contributors, but this data is sensitive and cannot be
revealed in the clear due to proprietary reasons or compliance requirements [23, 92].
To enable training of NN models with good accuracy, it is highly desirable to securely

1The quoted numbers are for a billionaires’ problem, where the compared values are 32-bit integers
in the local area network (LAN) setting.
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train over data from multiple contributors such that plaintext data is kept hidden
from the training entities. MPC provides an elegant and rigorous solution to the
above class of problems.

At the same time, in scenarios where a service provider has a pre-trained model
on sensitive data and would like to deploy machine learning as a service (MLaaS),
MPC can also provide a promising solution. The service provider and the client can
run a 2-party computation where the client can learning the classification/prediction
on its input without ever revealing the input to the service provider. Simultaneously,
the service provider does not have to reveal its model, which could be proprietary and
can contain valuable trade secrets. Below, we will describe two concrete applications
that can be enabled by techniques developed in this thesis:

Predictive Healthcare Application. Consider a pool of M users (data owners)
who wish to subscribe to a service that monitors their sleep data. Training a ML
model on each user locally is difficult due to the limited diversity of the data available
on each user’s device. On the other hand, such data can be highly sensitive and
reveal the timings, the quality of sleep and other information considered private by
the user. This hinders collection of such data and in turn disables ML approaches
which crucially rely on data. Using MPC, we demonstrate an approach where the
users can execute training over their joint data using N servers in a manner that
preserves privacy. First, these M users send “secret shares”2 of their data to the N
servers. The servers collectively run an interactive protocol (developed in this thesis)
to train an NN over the joint data to produce a trained model that can be used for
inference. The privacy requirement is that no individual party or server learns any
information about any other party’s training data. We call this the N-server model.
The trained model can be kept hidden from any single server/party and retained as
secret shares between the servers (or reconstructed to obtain the model in the clear).
Furthermore, even if the model is retained as secret shares between the N servers,
the inference/prediction can still be executed using the trained model on any new
test input – keeping the model, the new test input, and the predicted output private
from the other parties as well as the servers.

Another target application is the following: A group of M hospitals, each having
sensitive patient data (such as heart rate readings, blood group, sugar levels, etc.)
can use the above architecture to train a model on their joint data to run MLaaS
and help predict some disease or irregular health behavior. The system can be set up
such that the patient’s sensitive input and predicted output are only revealed to the
patient, and remains hidden from everyone else.

Detecting Online Child Abuse. In recent years, the distribution of child ex-
ploitative imagery (CEI) has proliferated with the rise of social media platforms –
from half a million reported in between 1998-2008 to around 12 million reports in
2017 to about 45 million in 2018 [18, 31]. US law prohibits the production, possession,

2Secret shares are parts of the secret that individually do not reveal anything about the secret.
For more details refer to Section 2.2.2.
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receipt, mailing, sale, distribution, shipment, or transportation of any such material.
Furthermore, there has been tremendous effort in blocking access, distribution, and
generation of such content [106, 7, 80, 18]. Despite such massive efforts to curb online
child abuse, the problem remains largely unsolved. Given the severity of the prob-
lem and stringent laws around the handling of such incidents (18 U.S. Code §2251,
2252), it is important to develop solutions that comply with these stringent (privacy)
regulations while enabling efficient detection and handling of such data. Given the
success of ML in image classification tasks, it is highly desirable to reap the success
of this technology to better tackle the problem of CEI. However, the inability to gen-
erate a database of the original images (due to legal regulations) leads to a problem
of lack of training data in ML. The work in this thesis provides a cryptographically
secure framework for this conundrum, where data is split into unrecognizable parts
among a number of non-colluding entities and privacy-preserving analytics can then
be run over such split data. In this way, MPC provides a two-fold solution, it enables
accumulation of good quality training data and at the same time can enable MLaaS
for automated detection of CEIs. In this manner, MPC can enable an end-to-end
solution for the problem of CEIs in social media with strong privacy guarantees on
the underlying data.

1.5 Hybrid Protocols: The Way Forward
Despite considerable efforts from the research community, there is a lack of low-
overhead protocols for MPC. How do we design more efficient MPC protocols? How do
we design approaches that reduce the gap between plaintext and private computation?
This dissertation proposes the use of hybrid approaches – co-designing solutions using
a spectrum of techniques from the privacy toolkit – as the way forward and supports
this proposition through 3 systems: SecureNN, Falcon, and Ponytail. Each of
these systems operates in a strictly stronger adversarial model – SecureNN in a
semi-honest model, Falcon in a malicious security with honest majority model, and
Ponytail in a malicious security with dishonest majority model.

Proposing novel and more efficient protocol constructions, this dissertation chal-
lenges a number of unspoken rules in privacy-preserving machine learning. Se-
cureNN pushes the frontiers of privacy-preserving ML by demonstrating faster prim-
itives for basic building blocks of ML algorithms such as non-linear functions: Recti-
fied Linear Unit (ReLU) and Maxpool. We achieve this using simple modular arith-
metic and avoid the use of garbled circuit (GC) and oblivious transfer (OT). These
techniques (GC or OT) require the use of inter-conversion protocols, i.e., protocols
that switch between different types of secret sharing schemes as they rely on Boolean
shares. Thus, in demonstrating faster primitives, SecureNN challenges the status
quo in that inter-conversion protocols are the most efficient approach for non-linear
operations in private ML. Similarly, there is an implicit understanding that MPC
protocols are communication-bound, i.e., the communication overhead of protocols
are the bottleneck for practical deployment. Falcon and Ponytail demonstrate
for the first time that MPC protocols can be compute-bound. These protocols fur-
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ther introduce improvements to ML building blocks by operating on smaller ring
sizes, proposing new constructions for comparisons (ReLU), and using HE to improve
matrix multiplication by orders of magnitude. These have tremendous implications
– the gap in performance between private ML vs. plaintext ML can be reduced to
acceptable values for practical deployment.

Through a brief summary of the three main chapters of this dissertation, we will
look at how hybrid approaches – co-designing solutions using a spectrum of techniques
– can bridge this performance gap between plaintext and private computations, thus
enabling a plethora of privacy-preserving applications.

(A) SecureNN introduces a cross-layer approach to designing protocols where we
integrate the private data layer (i.e., the secret sharing layer) with the private
computation layer. This enables us to develop protocols that are much more
efficient than state-of-the-art protocols which do not benefit from this coupling
of the two layers of abstraction. Furthermore, in a 3-party computation model,
these specialized protocols are tailored to vital components such as ReLU and
Maxpool in NN training and inference. Secondly, the use of simple modular
arithmetic avoids expensive conventional techniques such as garbled circuits
and oblivious transfers. These together demonstrate the practicality of such an
approach while introducing a new line of cryptographic protocols for MPC.

(B) Falcon demonstrates a hybrid integration of techniques from SecureNN [109]
and ABY3 [84] along with newer protocol constructions for privacy-preserving
deep learning. Specifically, Falcon enables efficient protocols for functions such
as ReLU and Batch-normalization which are critical to the ML infrastructure.
Furthermore, these protocols are developed in a maliciously secure model with
honest majority using the redundancy of a replicated secret sharing (2-out-of-3
secret sharing) scheme. Note that protocols in SecureNN are semi-honest secure
protocols and do not provide correctness under malicious corruptions. This
hybrid integration thus enables the protocols to maintain efficient performance
while also operating under stronger security models. Through techniques such
as symmetrization and optimized subroutines, the protocols in Falcon further
push the frontiers of efficiency in private machine learning.

(C) In Ponytail, a hybrid combination of MPC and HE has been explored in the
dishonest majority literature for the first time. Specifically, Ponytail demon-
strates the use of HE to improve the performance of privacy-preserving matrix
multiplication – both concretely and asymptotically. Matrix multiplication is
once again a critical component of ML algorithms today and improvements to
this have significant implications for privacy-preserving ML. More generally,
this work shows that bilinear operations are most efficiently computed in a
privacy-preserving manner using a hybrid combination of MPC and HE. This
work also incorporates advances from HE literature to improve the performance
of protocols in the MPC literature.
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1.6 Summary of Contributions
This thesis altogether aims at pushing the efficiency frontiers of MPC-based private
deep learning. It proposes new protocols that enable deployment of privacy tech-
nologies at a lower overhead, thus inching these technologies closer to practice. This
thesis is primarily based on the following works completed during the course of my
PhD:

[109] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN: 3-Party
secure computation for neural network training.” In: Privacy Enhancing Tech-
nologies Symposium (PETS). 2019

[111] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. “FALCON: Honest-majority maliciously secure frame-
work for private deep learning.” In: Privacy Enhancing Technologies Sympo-
sium (PETS). 2021

[29] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragoş Rotaru, Yongsoo Song, and
Sameer Wagh. “Maliciously secure matrix multiplication with applications to
private deep learning.” In: Advances in Cryptology—ASIACRYPT. *Author
order alphabetical. 2020

Each of these systems is implemented and demonstrates both the asymptotic
(in algorithmic complexity) as well as concrete efficiency (practical improvements
including the constants involved in algorithmic complexity) improvements. These
works strictly improve upon each other in the adversarial setting and contribute
uniquely to the vision of making private machine learning practical. Specifically, this
thesis makes the following contributions:

(A) SecureNN: A novel cross-layer protocol design paradigm for efficient non-
linear operations in MPC. The approach avoids the use of expensive crypto-
graphic techniques such as OTs and GCs in favor of simple modular arithmetic.
This improves upon the prior art in private ML by about an order of magni-
tude. The simplicity of this approach has already led to its early adoption in
the industry [4, 97, 89].

(B) Falcon: This work improves upon SecureNN to further improve the per-
formance of non-linear operations. Protocols in Falcon are secure against
malicious adversaries (honest majority) and it is the first secure framework to
support high capacity networks with over a hundred million parameters such as
VGG16 as well as the first to support batch normalization, a critical component
of deep learning that enables training of complex network architectures such as
AlexNet. This improves upon prior art by upto two orders of magnitude.

(C) Ponytail: This work is the first demonstration of an O(n2) communication
overhead matrix-multiplication of two n × n matrices in dishonest majority
MPC setting; the prior best known algorithm used an O(n3) communication
(or O(n2.8) with Strassen’s algorithm [66]). The work also makes a compelling
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case for the use of a hybrid approach – combining HE with MPC – for efficient
privacy-preserving computation.

In the course of improving the performance of private computation techniques,
this dissertation also challenges research dogmas such as the use of inter-conversion
protocols or the communication-bound nature of MPC protocols (detailed description
in Section 1.5) and provides new directions for efficient protocol design. I have also
worked on a number of other projects in the space of privacy-enhancing technologies,
which are listed here but which will be omitted from the rest of this dissertation for
coherency:

[103] David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Towards
probabilistic verification of machine unlearning. https://arxiv.org/pdf/
2003.04247.pdf. 2020

[110] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. “DP-
Cryptography:Marrying differential privacy and cryptography in emerging ap-
plications.” In: Communications of the ACM. 2020

[113] Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh, and Prateek Mittal.
“Guard placement attacks on path selection algorithms for Tor.” In: Privacy
Enhancing Technologies Symposium (PETS). 2019

[58] Hans Hanley, Yixin Sun, Sameer Wagh, and Prateek Mittal. “DPSelect: A
differential privacy based guard relay selection algorithm for Tor.” In: Privacy
Enhancing Technologies Symposium (PETS). 2019

[108] Sameer Wagh, Paul Cuff, and Prateek Mittal. “Differentially private oblivious
RAM.” in: Privacy Enhancing Technologies Symposium (PETS). 2018

[33] Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer
Wagh. “The Pyramid scheme: Oblivious RAM for trusted processors.” In: Tech
Report. https://arxiv.org/abs/1712.07882. 2017

[117] Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. “Camouflage:
Memory traffic shaping to mitigate timing attacks.” In: IEEE International
Symposium on High Performance Computer Architecture (HPCA). 2017
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Chapter 2

Background and Related Work

In this section, we introduce some of the basic concepts required for a deeper un-
derstanding of the contributions of this dissertation. Two-party computation and
three-party computation, two special cases of MPC we will consider in this disserta-
tion, will be denoted by 2PC and 3PC respectively. We will introduce notation along
with the basic primitives used throughout this thesis.

2.1 Basic Concepts
We now introduce the concepts of statistical distance between two distributions, a
concept central to proofs in MPC. Rigorous quantification of the indistinguishability
of the transcripts (cf. Section 2.2.3) is done using this metric. We also introduce some
basic complexity theory, and the notions of cryptographic security vs. information-
theoretic security.

2.1.1 Statistical Distance
Let X,Y be two random variables taking values in some finite set A. The statistical
distance between X and Y is

∆(X,Y ) = max
S⊂A
|Pr[X ∈ S]− Pr[Y ∈ S]| (2.1)

We say that X and Y are (statistically) ϵ-close if ∆(X,Y ) ≤ ϵ. This distance is also
known as total variation distance between X and Y . This metric has a few important
corollaries:

Theorem 2.1. The statistical distance is equal to half the ℓ1 distance, i.e.,

∆(X,Y ) =
1

2

∑
a∈A

|Pr[X = a]− Pr[Y = a]|

Theorem 2.2. Suppose X and Y are (statistically) ϵ-close. Alice and Bob play the
following game: Bob flips a fair coin and then sends Alice a sample from either X or
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Y depending on the result of the coin flip (say, X if it lands ‘heads’ and Y otherwise).
Alice is asked to guess from what random variable the sample was taken. Show that
Alice cannot guess correctly the coin toss with probability greater than 1/2 + ϵ/2. On
the contrary, if ∆(X,Y ) ≥ ϵ then there exists a strategy for Alice that will enable her
to correctly guess the coin toss with probability at least 1/2 + ϵ/2.

Theorem 2.1 shows the connection between the statistical distance and the ℓ1 dis-
tance. Theorem 2.2 on the other hand goes to the heart of the indistinguishability
game formulation of cryptography. For instance, “how well can an adversary distin-
guish between the encryptions of two messages?” is formulated very similarly to the
set-up in corollary 2.2.

2.1.2 Complexity Theory
We first define the concept of a negligible function, that will allow us to easily formalize
the concepts of cryptographic vs. information-theoretic security.
Definition 1 (Negligible Function). We say that a function f : N→ R is a negligible
function, i.e., f ∈ negl(n) if for every polynomial p : N → R there exists an integer
np such that for all n > np

|f(n)| < 1

p(n)
(2.2)

In other words, a negligible function is any function that asymptotically ap-
proaches zero faster than any polynomial function.

2.1.3 Privacy – Cryptographic vs. Information-Theoretic
While there are different notions of quantifying privacy, in this dissertation, we look at
systems that provide two notions of privacy – cryptographic privacy or information-
theoretic privacy – the latter being a special case of statistical privacy. Here, we use
the notions of security and privacy synonymously.
Definition 2 (Statistical Indistinguishability). Let {X}n and {Y }n be two sets of
distributions. We say that these two distributions are statistically indistinguishable if
∆(X,Y ) ∈ negl(n).

To define computational indistinguishability, we consider a probabilistic polyno-
mial time adversary (PPT) A. This adversary tries to distinguish between the two
distributions, i.e., samples a polynomial number of data points from either distri-
bution and tries to guess the distribution from which the samples were obtained.
Inability to distinguish these with high probability is quantified using computational
indistinguishability.
Definition 3 (Computational Indistinguishability). Let {X}n and {Y }n be two sets
of distributions. Let A denote any probabilistic polynomial-time algorithm that takes
in oracle access (can ask for samples) to a distribution and produces an output in
{0, 1}. We say that these two distributions are computationally indistinguishable if
∆(A(X),A(Y )) ∈ negl(n) for probabilistic polynomial-time algorithms A.
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Systems that provide computational indistinguishability, i.e., systems where com-
putational assumptions are required to argue the security, are said to provide cryp-
tographic security. If a system provides perfect statistical indistinguishability, i.e.,
∆ = 0, then the system provides information-theoretic security (akin to Shannon’s
definition of perfect secrecy [99] achieved using a one-time pad). Finally, if the sys-
tem provides statistical indistinguishability which is not perfect, then we say that the
system provides statistical security (with the appropriate security parameter).

2.1.4 Groups, Rings, and Fields
Groups, Rings, and Fields are sets of elements with some basic structure. Informally,
groups are a set of abstract objects that are closed under a binary operation. Rings
are groups under the binary operation addition and also satisfy some properties under
the binary operation multiplication. Finally, Fields are groups under both addition
and multiplication. More formally,

Definition 4 (Groups). A Group is a set G which is closed under a binary operator
∗, i.e., for x ∈ G, y ∈ G, x ∗ y ∈ G. Furthermore, the set has the following three
properties:

• Existence of Identity: There exists an e ∈ G such that x ∗ e = e ∗ x = x for all
x ∈ G

• Existence of Inverse: For every x ∈ G, there exists x′ ∈ G such that x ∗ x′ =
x′ ∗ x = e

• Associativity: For all x, y, z ∈ G,

x ∗ (y ∗ z) = (x ∗ y) ∗ z

A group is said to be “abelian” if for all x, y ∈ G, x ∗ y = y ∗ x. A Ring is more
structured than a group and a Field is even more structured than a Ring. In fact,
every Field is a Ring and every Ring is a Group.

Definition 5 (Rings). A Ring is a set R which is closed under two binary operators
(+,×) with the following three properties:

• R is an abelian group under +
• Associativity of × : For all x, y, z ∈ G,

x× (y × z) = (x× y)× z

• Distributive Property: For all x, y, z ∈ G,

x× (y + z) = (x× y) + (x× z)
(y + z)× x = (y × x) + (z × x)

Definition 6 (Fields). A Field is a set F which is closed under two binary operators
(+,×) with the following properties:
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• F is an abelian group under +
• F − {0} (where 0 is the additive identity of F ) is an abelian group under ×

The set of numbers modulo n for a given natural number n, denoted by Z/nZ,
and the set of all polynomials with integer coefficients, denoted by Z[x], are some
examples of Rings. The set Z/pZ where p is a prime is an example of a Field. Fields
are more fundamental structures to cryptography due to their additional properties
such as the existence of multiplicative inverse. However, for the remainder of the
thesis, a basic understanding of these concepts should be sufficient.

2.2 Multi-Party Computation
MPC enables a set of parties, each with some private input, to compute a function of
these inputs without revealing anything about the inputs other than what is already
revealed by the output. Thus it is important to note that MPC does not deal with
the question “How much information is revealed by the function output?”. This is
implicit in the fact that the parties decide to participate in the computation.

In order to compute the functionality, the parties run a protocol amongst them-
selves, at the end of which, based on the protocol description, one or more of the par-
ties can end up with the function computation. The protocols usually run in rounds,
a computation phase where each party performs as much computation as possible,
followed by a communication phase where each party communicates as much data
as possible with other parties before proceeding to the next round. The adversar-
ial model describes the various choices under which a given protocol is shown to be
secure. Informally, MPC protocols need to have the following two properties:

• No additional information about the inputs of any party can be inferred from
the messages sent during the protocol execution (this is known as input privacy).
In other words, the only information revealed is that which is revealed by the
output of the computation.

• No proper subset of the parties (in some cases a threshold of parties), colluding
with each other (either sharing data between themselves or deviating from the
protocol), should be able to force an incorrect output result (this is known as
correctness).

Section 2.2.1, described below, discusses the various types of adversaries (which cor-
respondingly modify the above two properties).

2.2.1 Adversarial Models
The security properties of an MPC protocol are quantified by formulating the ad-
versary. Such an adversary is defined by a number of parameters – the adversarial
power, the network model, the threshold of corruptions just to name a few. We will
introduce the different terminologies required to succinctly define an MPC adversary
below.
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Synchronous vs. Asynchronous Network. In a synchronous adversarial model,
we assume that the parties are connected by a synchronous network with access to a
global clock. In such a system, we assume a strict upper bound on message delivery
times and hence protocols can proceed in rounds with strong delivery guarantees. On
the other hand, in an asynchronous adversarial model, messages can be delivered in
an arbitrary order and have arbitrary delays in between. In particular, a standard
assumption is that of assuming a rushing adversary, who may not delay or block
messages from honest parties but the adversary sees all the messages sent by honest
parties to corrupted parties at any given round before sending its own messages for
that round.

Semi-honest vs. Malicious Corruptions. A semi-honest adversary or honest-
but-curious adversary is one that follows the protocol specification but may try to infer
as much as possible while abiding by the protocol description. In other words, if the
protocol description states that a party generate a random number, a semi-honest
adversary corrupting that party will truly have to generate a random number. In
contrast, a malicious or byzantine adversary may arbitrarily deviate from the protocol
specification. Semi-honest, malicious corruptions are also known in the literature
alternatively as passive, active corruptions respectively. Note that a relaxed version
of malicious corruption is the notion of malicious security with abort (security with
abort), which ensures that either the protocol succeeds and each party receives its
outputs or the protocol aborts, in which case all the honest parties learn that the
protocol aborted.

Corruption Threshold. Another adversarial parameter in MPC protocols is the
number of adversarial corruptions (parameter t in a t-out-of-n secret sharing). t < n/2
is an important threshold value and is called honest majority due to the presence of a
majority of honest parties. The strongest model of corruption t < n (in particular t =
n−1) is referred to as the dishonest majority, as the name indicates it has a majority of
parties that behave dishonestly. Finally, there are other important thresholds such as
t < n/3 for which we know that there exist information-theoretic secure protocols. In
general, there are a number of other results in the literature regarding the possibility
and impossibility of certain combinations of adversarial models.

Static vs. Adaptive Corruptions. Adaptive security refers to a scenario when
the adversary can corrupt parties during the execution of the protocol, in particular,
after seeing some of the communication exchanges (transcripts). In contrast, a static
adversary must choose the parties to corrupt before the protocol begins.

Computational Power. If the adversary is computationally bounded, i.e., if the
adversary is assumed to run in probabilistic polynomial-time, then we call it a com-
putational adversarial setting. The security of protocols in such a setting typically
relies on the assumed hardness of some problem (like factoring a large number into
prime factors). On the other hand, if the adversary is computationally unbounded,
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then we are in an information-theoretic setting. There are two levels of security here
– perfect security and statistical security (briefly described in Section 2.1.3). In the
context of Section 2.2.3, these two cases correspond to the result of a real execution
of the protocol with a real adversary to be exactly the same and statistically close
to the result of an ideal execution with a trusted party and an ideal-world adversary
(also known as the simulator).

There are a number of other properties formalized in the literature such as fairness
where all parties receive their outputs if any one party receives its output and guaran-
teed output delivery (G.O.D) where the honest parties are guaranteed to successfully
execute the computation. There is substantial literature regarding various impossi-
bility results in achieving fairness, security with abort, G.O.D for various threshold
regimes and adversarial computational powers [54, 12, 90]. Security requirements can
be split into privacy of the input data and correctness of the computation, a notion
formalized by Araki et al. [6].

2.2.2 Secret Sharing
Secret sharing, as the name suggests is a technique used to distribute a secret among
a number of participants (each party has a share of the secret). This distribution is
such that (1) each individual share does not reveal any information about the secret
(secure secret sharing scheme), and (2) the secret can be reconstructed only when a
sufficient number of parties combine their shares together (threshold scheme). Secret
sharing was invented independently by Adi Shamir [98] and George Blakely [15] in
1979 with different approaches but same properties.

Threshold secret sharing schemes are a generalization of the basic concept of secret
sharing. Threshold schemes have a defined number of parties that are necessary to
reconstruct the original secret. They are usually denoted as t-out-of-n secret sharing
or (t, n)-secret sharing scheme, where 1 < t ≤ n is the threshold and n is the total
number of parties. Throughout this dissertation, we will focus on secret sharing over
various Rings and Fields.

2PC examples. The most basic example of secret sharing is in a 2PC set-up where
the only non-trivial sharing scheme is a 2-out-of-2 secret sharing scheme. Under such
a scheme, given a ring say ZL, and a secret s, shares can be defined as s1, s2 such
that s1 + s2 ≡ s (mod L).

3PC examples. The second interesting example for secret sharing is in a 3PC
set-up. Here we can have two possible schemes, 3-out-of-3, where all 3 shares are
necessary to reconstruct the underlying secret and 2-out-of-3, where 2 shares can
potentially reconstruct the underlying secret. Simple examples of such schemes are
as follows: shares s1, s2, s3 such that s1 + s2 + s3 ≡ s (mod L) is an example of a
3-out-of-3 sharing scheme. On the other hand, distributing shares (s1, s2), (s2, s3),
and (s3, s1) among the three parties forms a 2-out-of-3 secret sharing scheme. When
the secret sharing scheme is understood from the context, we will use [s]L to denote
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the sharing of a secret s in ZL, i.e., s1, s2, s3 with the three parties respectively in a
3-out-of-3 secret sharing scheme.

n-Party setting. Another interesting example of a secret sharing scheme is an n-
out-of-n secret sharing. In this setting, commonly known as dishonest majority, each
party assumes that potentially all the other parties could be colluding and proceed to
securely compute functions in such a setting. In such a scheme, a secret s is shared
as s1, s2, . . . sn with each party respectively, such that

s ≡ s1 + s2 + . . .+ sn (mod L)

for some value of the modulus L.

2.2.3 Simulation Based Proofs and UC Security
The security of MPC protocols are usually proven using a real-world/ideal-world
simulation paradigm [21, 20]. In this paradigm, there is an environment E , the
purpose of which is to model “everything else” besides the protocol execution. This
everything else could potentially contain other executions of the same protocol and
it is imperative for a strong security formulation to account for that. The spirit
of writing a simulation based proofs is as follows: given an adversary A who can
extract any additional information from the protocol execution than the output, we
can construct another adversary, which will be called a simulator S, operating in
a slightly “different scenario,” that can extract the same information. However, by
construction, the simulator S in the “different scenario” will be secure by definition
as it will not have access to any private data. With this brief introduction, we will
look at the two paradigms in more detail.

Let us consider a simple example of a 4PC set up with 2 adversarial corruptions.
Let us assume xi for i ∈ {1, 2, 3, 4} is the private input of each party and that the
function computation is f(x1, x2, x3, x4). Furthermore, let π be the proposed MPC
protocol. In order to prove the security of π, we first formulate an ideal functionality,
in this case would simply be F specified by 4 inputs xi for i ∈ {1, 2, 3, 4} and 4 outputs
all equal to f(x1, x2, x3, x4). The ideal functionality in general will be more nuanced
and has to be carefully defined as it contains the essence of the security guarantees. In
this backdrop, the real interaction is defined as the scenario where the parties execute
the protocol π in the presence of an adversary A and the environment Z. This is
shown in Figure 2.1a. On the other hand, in the ideal interaction, the parties send
their inputs to a trusted external party which truthfully executes the above defined
ideal functionality |F . This is shown in Figure 2.1b. To prove the security of π,
for every adversary A in the real interaction, there exists an adversary in the ideal
interaction called a simulator S such that no environment E can distinguish between
these two scenarios. In other words, whatever information the adversary extracts in
the real interaction, the simulator can extract it in the ideal world as well. This is
shown in Figure 2.1, where we demonstrate the non-existence of any environment
that can distinguish between the above two scenarios.

16



(a) Real-world interaction

(b) Ideal-world interaction

Figure 2.1: Examples of real-world and ideal-world interactions in a 4-party MPC protocol with 2
adversarial corruptions (P1 and P2 corrupt, P3 and P4 honest).
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In general, for more complex protocols, we set up hybrid interactions where the
sub-protocols used in a given protocol are replaced by their corresponding ideal func-
tionalities and then prove that the interactions can be simulated. This hybrid ar-
gument in effect sets up a series of interactions I0, I1, . . . , Ik for some k where I0
corresponds to the real interaction and Ik corresponds to the ideal interaction. Each
neighboring interaction, i.e., Ii, Ii+1 for i ∈ {0, . . . , k − 1}, is then shown to be indis-
tinguishable from each other, in effect showing that the real and ideal interactions
are indistinguishable.

The usual technique to construct a simulator is to have the simulator run a simu-
lated version of the protocol internally, i.e., emulating the roles of the honest parties
and interacting with the adversary. This is what we call an internal run. This inter-
nal run can then be used to extract the inputs of the adversarial party (which can
then be forwarded to the functionality in the ideal interaction). Note that in the
hybrid argument, since the subroutines used in the protocol can be replaced by their
corresponding ideal interactions, the simulator can emulate the roles of these trusted
functionalities in its internal run. Informally, the simulator needs to show that:

• All the transcripts from the real interactions can be simulated (else the adver-
sary and environment can distinguish between the real and ideal interactions)

• The honest parties receive their outputs correctly (once again, since the ad-
versary and environment can distinguish the real and ideal interaction simply
based on the outputs)

2.3 Homomorphic Encryption
Homomorphic Encryption (HE) is a special class of encryption schemes that allows for
computation over the encrypted data. Given any two values Encpk(a) and Encpk(b),
we can compute both Encpk(ab) and Encpk(a+ b) without knowing the decryption key
sk. Such an encryption scheme is known as a fully homomorphic encryption (FHE)
scheme as opposed to a partial homomorphic encryption scheme that supports one
of these operations. Craig Gentry in 2009 [53, 52], was the first to demonstrate that
such fully homomorphic encryption schemes are possible. Since then, there has been
an explosion of work in faster and improved FHE schemes [47, 17, 30].

More generally, given a set of messages m1,m2, . . . ,mn, it is possible to compute
an encrypted value which decrypts to f(m1,m2, . . . ,mn) for a given function f(·)
using only cm1 , cm2 , . . . , cmn . A homomorphic encryption scheme has the following
properties stated informally:

• The decryption of the evaluation f(·) using the encrypted values cm1 , cm2 , . . . , cmn

should result in f(m1,m2, . . . ,mn) (this is known as the correctness property).

• The evaluation of the f(·) using cm1 , cm2 , . . . , cmn is indistinguishable from an
encryption of f(m1,m2, . . . ,mn) (this is known as the circuit privacy property).

• The decryption circuit is “small” (this is known as the compactness property).
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Somewhat homomorphic encryption or leveled homomorphic encryption is a re-
laxed variant of a fully homomorphic encryption scheme where a finite depth circuit
can be computed, i.e., the function f(·) has a finite depth1. This usually comes at a
significant improvement in performance of the algorithm as it eliminates the expen-
sive bootstrapping required for known FHE schemes. At the same time, larger depth
schemes require larger encryption parameters which in turn reduce the efficiency. Fi-
nally, there are parameter regimes that are known to be insecure and where efficient
attacks exist. Hence setting the parameters of HE schemes is a complex interplay of
security, efficiency as well as the computation required. In the next section, a quick
introduction to the BFV scheme is presented which will be required for the purposes
of this dissertation.

2.3.1 BFV Scheme
We use the Fan-Vercauteren variant of Brakerski’s scale-invariant HE scheme [16, 47],
which we shall refer to as the BFV scheme. The BFV scheme, similar to some of the
most efficient FHE schemes, is based on the Ring Learning With Errors (RLWE)
assumption [78]. In Chapter 5, we will use this HE scheme to improve matrix mul-
tiplication in MPC. Below, we briefly describe the set-up and notation followed by a
description of the encryption and decryption algorithms.

Notation. For a positive integer q, let Zq = Z ∩ (−q/2, q/2]. For a finite set
S, U(S) denotes a uniform distribution over S. The basic algebraic structure is a
polynomial ring R = Z[X]/(XN + 1) and Rq = Zq[X]/(XN + 1) where N is a power
of 2. These are the ring of integers of (2N)-th cyclotomic field and its residue ring
modulo q. We define ‖a‖∞ of an element a ∈ Rq as the infinite norm of its coefficient
vector in ZN

q . A secret key sk = s ∈ R is sampled uniformly from the set R3 of
ternary polynomials with coefficients in {0,±1}. We define the normalized norm of
randomness rm by ‖rm‖ = max{‖u‖∞ , ρ−1 · ‖e0‖∞ , ρ−1 · ‖e0‖∞}. For B > 0, we call
c a B-ciphertext if there exists m ∈ Rp and rm = (u, e0, e1) ∈ R3 such that ‖rm‖ ≤ B
and c = Encpk(x, rx). We also use UB to denote a uniform distribution over the set
of triples r = (u, e0, e1) ∈ R3 such that ‖u‖ ≤ B. Finally, x⃗ denotes vectors, i.e.,
x⃗ = (x1, . . . , xk) for some k specified in the context. We also use the notation [k] to
denote the set {1, 2, . . . , k}.

BFV Scheme. A public key of BFV is generated by

pk = (−a · s+ e, a) ∈ R2
q , (2.3)

for a ← U(Rq) and e ← χ from the error distribution χ over R. We set as χ
the discrete Gaussian with small variance and let ρ be an upper bound of χ, i.e.,
|e| ≤ ρ holds with an overwhelming probability where e ← χ. The BFV encryption,

1The depth of a circuit is defined as the length of the longest path from input to output, which
frequently is the number of dependent multiplications in the circuit.
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decryption is given by the following equations:

Enc : m 7→ cm = u · pk + (∆ ·m+ e0, e1) (mod q)
Dec : cm 7→ m = b∆−1 · (c0 + c1 · s)e (mod p)

(2.4)

where cm = (c0, c1), m ∈ Rp is the message to be encrypted, ∆ = q/p, u ← U(R3),
e0, e1 ← χ are small polynomials, and b·e denotes the nearest integer function. For
the remainder of the paper, we use the shorthand rm = (u, e0, e1) ∈ R3 to denote the
randomness used for encrypting a plaintext m. We write cm = Enc(m, rm) when the
randomness is taken as input of encryption.

Single Instruction Multiple Data (SIMD) Optimization. An optimization
that significantly improved the performance of HE schemes is the technique of pack-
ing multiple values into a single ciphertext. The native plaintext space of BFV is
Rp, but using the Discrete Fourier Transform (DFT) over Zp, one can pack mul-
tiple values in a single ciphertext and thereby support parallel computation in a
SIMD manner. We choose a plaintext modulus satisfying p = 1 (mod 2N) so that
XN+1 =

∏
i∈Z×

2N
(X−αi) factors into a product of N linear polynomials for a (2N)-th

root of unity α modulo p. Hence, we can use the packing technique via ring isomor-
phism Rp → ZN

p , m(X) 7→ (m(αi))i∈Z×
2N
. Recall that the multiplicative group Z×

2N is
isomorphic to ZN/2 × Z2. In our implementation, we utilize N/2 slots corresponding
to the cyclic subgroup 〈5〉 of order N/2. It allows us to rotate an encrypted vector
by evaluating the automorphism X 7→ X5 homomorphically. More generally, we can
perform an arbitrary linear transformation on these two vectors by combining homo-
morphic rotation and plaintext-ciphertext multiplication in BFV. The complexity of
a linear transformation is mainly dominated by k rotations where k ≤ N/2 is the
number of nonzero diagonals (A0,i, A1,i+1 . . . , AN/2−1,i−1) of its matrix representation
A ∈ ZN/2×N/2

p . Please refer to [56] for details.

2.4 Zero-Knowledge Proofs
A zero-knowledge proof is a protocol by which one party (called the prover) can
prove to another party (called the verifier), the correctness of some statement without
revealing anything about the statement. Consider, for example, a prover who wishes
to prove to a verifier that he knows the password corresponding to an email ID:
swag@princeton.edu. A naive solution would be for the prover to hand over the
password to the verifier. This is clearly not zero-knowledge as the prover has to give
the private knowledge (called the witness) to the verifier. A potential zero-knowledge
protocol would be to have the prover send an email to the verifier from the ID with
a given challenge text. This protocol, within the limits of secure email, can then be
said to be zero-knowledge.

More formally, a zero knowledge proof must have the following three properties:
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(A) Soundness: If the statement is false, then no prover should be able to success-
fully convince the verifier that it is true, except with some small probability.

(B) Completeness: If the statement is true then a honest verifier (one that follows
the protocol) should be convinced by an honest prover.

(C) Zero-knowledge: If the statement is true, the verifier learns nothing other than
the fact that the statement is true.

2.5 Machine Learning Algorithms
Machine learning is a class of computer algorithms that can perform specific tasks
without explicit instructions. An example of this is feeding the algorithms a large
corpus of data and programming the algorithm to “learn” the patterns and inferences
necessary for automatically performing the task. Such algorithms are widely used in
computer vision, spam filtering, natural language processing, etc. For the purpose
of this dissertation, we will focus on a class of learning algorithms called supervised
learning, applied specifically to computer vision.

In supervised learning, the algorithm is provided with a large corpus of data called
training data as well as the appropriate classification of each data point, called the
label. Refer to Section 2.5.2 for example datasets considered in this work. Another
smaller dataset, or a fraction of the training dataset, is kept aside for testing purposes
and is called test data. A supervised learning algorithm then iterates over the training
dataset, using the provided label as feedback, to modify its parameters. Eventually,
after a large number of iterations, the algorithm converges on a state of parameters
that would usually work with high accuracy on the test dataset and at this point the
model is referred to as trained.

2.5.1 Neural Networks
The focus of this dissertation is on Deep and Convolutional Neural Network (DNN
and CNN) training algorithms. These are a class of ML algorithms that have shown
tremendous promise on computer vision applications. The network, which consists
of a series of transformation of the input, consists of different types of “layers,” the
output of the previous one being fed into the next layer. Each layer consists of a
number of neurons, a strategy that aims to mimic the human brain in terms of its
processing. Each neuron receives a combination of some set of neurons from the
previous layer and the firing of neurons is typically mimicked using a thresholding
function. The output of the final layer indicates the appropriate label corresponding to
the input data (this is called the forward pass). In the training phase, the “predicted
output” is compared with the ground truth and the difference is used as a feedback to
improve the learnable parameters of the network (this is called the backward pass).
This process repeated many times, also known as (stochastic) gradient descent, results
in a trained model. A number of different types of network architectures exist that
differ in the types of layers used, the sizes/parameters of these layers, the number of
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layers, etc. We will take a quick look at the general structure of such networks and
then briefly describe a few network architectures relevant to this work.

The most common layers in this class of NN architectures are linear layers –
fully-connected and convolutional. Fully-connected layers connect every neuron of
the previous layer to every neuron of the following layer. A set of “weights”, cor-
responding to a connection between an input neuron and an output neuron (on the
next layer), controls the strength or importance of that input neuron to the output
neuron. These comprise the learnable parameters of that layer. A closely related
layer is the convolution where the weight matrix is convoluted with the input to re-
sult in the output. Such an operation preserves local structures, an important factor
in enabling its success in computer vision. In terms of their functionality, these two
layers correspond to matrix multiplication and a convolution. In a broad range of
NN architectures, every layer in the forward propagation contains a linear operation
followed by a (non-linear) activation function f . One of the most popular activation
functions is the Rectified Linear Unit (ReLU) defined as ReLU(x) = max(0, x). The
back-propagation updates the weights appropriately making use of derivative of the
activation function (in this case ReLU′(x), which is defined to be 1 if x > 0 and 0
otherwise) and matrix multiplication.

A large class of networks can be represented using the following functions: matrix
multiplication, convolution, ReLU, Maxpool (defined as the maximum of a set of
values, usually in a sub-matrix), batch-normalization (defined as xi∑

xi
for a given set

of values {x1, · · · , xn}) and their derivatives. It is important to note that in MPC, the
non-linear activation functions are the dominant cost in stark contrast to plaintext
machine learning where matrix multiplications are the dominant cost. This is because
non-linear functions, in particular in conjunction with linear layers are expensive to
evaluate privately. We consider the following NN architectures in this work:

(A) Network-A: This is a 3-layered fully-connected network with ReLU activation
after each layer considered in SecureML [85] (see Figure D.1). This is the
smallest network with around 118K parameters.

(B) Network-B: This network again is a 3-layered network with the first layer
as convolution followed by 2 fully-connected layers using ReLU activation after
each layer. This architecture is chosen from Chameleon [95] with approximately
100K parameters (see Figure D.2).

(C) Network-C: This is a 4-layered network with 2 convolutional and 2 fully-
connected layers selected from prior work MiniONN [77]. This network uses
Max Pooling in addition to ReLU layer and has around 10,500 parameters in
total (shown in Figure D.3).

(D) LeNet: This network, first proposed by LeCun et al. [76], was used in auto-
mated detection of zip codes and digit recognition [75]. The network contains 2
convolutional layers and 2 fully connected layers with 431K parameters (shown
in Figure D.4).

(E) AlexNet: AlexNet is the famous winner of the 2012 ImageNet ILSVRC-2012
competition [69]. It has 5 convolutional layers and 3 fully connected layers and
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uses Batch-Normalization layer for stability, efficient training, and has about
60 Million parameters (see Figure D.5).

(F) VGG16: Another network which we test on is called VGG16, the runner-up
of the ILSVRC-2014 competition [102]. VGG16 has 16 layers and has about
138 Million parameters (see Figure D.6).

(G) ResNet-50: We also evaluate our framework on ResNet-50, a residual network
(RNN, a subclass of CNNs) with 50 layers, the winner of the ILSVRC-2015
competition [59]. VGG16 has about 23 Million parameters (refer to [86] for
details).

More details on these networks as well as the governing equations are deferred to
Appendix B.

2.5.2 Datasets
This dissertation uses 3 datasets popularly used for training image classification mod-
els — MNIST [83], CIFAR-10 [68], and Tiny ImageNet [114]. These are briefly de-
scribed below:

(A) MNIST [83]: MNIST is a collection of handwritten digits dataset. It consists
of 60,000 images in the training set and 10,000 in the test set. Each image is a
28× 28 pixel image of a handwritten digit along with a label between 0 and 9.
We evaluate Network-A, B, C, and the LeNet network on this dataset in both
the semi-honest and maliciously secure variants.

(B) CIFAR-10 [68]: CIFAR-10 consists of 60,000 images (50,000 training and
10,000 test images) of 10 different classes (such as airplanes, dogs, horses, etc.).
There are 6,000 images of each class with each image consisting of a colored
32 × 32 image. We perform private training and inference of AlexNet and
VGG16 on this dataset.

(C) Tiny ImageNet [114]: Tiny ImageNet dataset consists of 100,000 training
samples and 10,000 test samples with 200 different classes [114]. Each sample
is cropped to a size of 64 × 64 × 3. We perform private training and inference
of AlexNet and VGG16 on this dataset.
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Chapter 3

SecureNN: Efficient 3-Party
Computation Protocols

Neural Networks (NN) provide a powerful method for machine learning training and
inference. To effectively train, it is desirable for multiple parties to combine their
data – however, doing so conflicts with data privacy. This work proposes SecureNN
that provides novel three-party secure computation protocols for various NN building
blocks such as matrix multiplication, convolutions, Rectified Linear Units, Maxpool,
normalization, and so on. This enables us to construct three-party secure protocols
for training and inference of several NN architectures such that no single party learns
any information about the data. Experimentally, we implement SecureNN and
deploy it over Amazon EC2 servers in different settings (LAN/WAN). SecureNN
advances the state-of-the-art of secure computation for neural networks in three ways:
(A) Scalability: SecureNN is the first work to provide neural network training on

Convolutional Neural Networks (CNNs) that have an accuracy of > 99% on the
MNIST dataset.

(B) Performance: For secure inference, SecureNN outperforms prior 2- and 3-
server works (SecureML, MiniONN, Chameleon, Gazelle) by 6×-113× (with
larger gains obtained in more complex networks). Total execution times for
SecureNN are 2×-4× lower than even just the online times of these works. For
secure training, compared to the only prior work (SecureML) that considered a
much smaller fully-connected network, SecureNN protocols are 79× and 7×
faster, respectively, than their 2- and 3-server protocols. In the WAN setting,
these improvements are more dramatic and we obtain an improvement of 553×!

(C) Security: Our protocols provide two kinds of security: full security (privacy
and correctness) against one semi-honest corruption and the notion of privacy
against one malicious corruption [Araki et al. CCS’16]. All prior works only
provide semi-honest security and ours is the first system to provide any security
against malicious adversaries for the secure computation of complex algorithms
such as NN inference and training.

These gains come from a significant improvement in communication through the
elimination of expensive garbled circuits and oblivious transfer protocols.
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3.1 SecureNN Overview
Secure protocols for NN algorithms generally follow the paradigm of executing arith-
metic computation, such as matrix multiplication and convolutions, using Beaver
triplets or homomorphic encryption and executing Boolean computation, such as
ReLU, Maxpool, and their derivatives, using Yao’s garbled circuits. In order to make
these protocols compatible with each other, share conversion protocols are also used
to move from an arithmetic encoding (either arithmetic sharing or homomorphic en-
cryption ciphertext) to a Boolean encoding (garbled encoding) and vice-versa. The
communication cost of securely evaluating Boolean computations is prohibitive due
to the use of Yao’s garbled circuits that incur a multiplicative factor overhead of 128
(the security parameter, κ). This is precisely where our new protocols come to the
rescue. We develop new protocols for Boolean computation (such as ReLU, Maxpool,
and their derivatives) that have much lesser communication overhead (at least 8×
better) than the cost of converting to a Yao encoding and executing a garbled circuit.
We now present our techniques in more detail.

We denote the three servers by P0, P1, and P2. At the start of any protocol, parties
P0 and P1 hold 2-out-of-2 additive secret shares of the inputs to the protocol. All
our protocols maintain the invariant that at the end of the protocol P0 and P1 hold
2-out-of-2 shares of the output. We stress that even though for all our protocols only
P0 and P1 hold the shares of the input and the output, P2 also crucially takes part in
the real computation during the protocol. That is, P2 is not a dummy party that only
assists in the two-party protocol between P0 and P1 by providing relevant randomness.

Non-linear activations. We first describe our main ideas for computing the
derivative of ReLU function, that is ReLU′.
Function ReLU′. Note that ReLU′(x) is 1 if x ≥ 0 and 0 otherwise. First, we note
that ReLU′(x) is closely related to the most-significant bit (MSB)1 of x in our repre-
sentation of values in Z264 . That is, ReLU′(x) is 1 iff MSB(x) = 0. Hence, it suffices
to compute the MSB(x). Next, since computing the LSB of a number is much easier
than computing the MSB (as it does not require bit extraction), we flip the problem
to computing the LSB as follows: MSB(a) = LSB(2a) if we are working over an odd
ring2. For now, let us assume that we are working over an odd ring and we later
describe how we go from even ring Z264 to an odd ring Z264−1.

At the start of the protocol, P0 and P1 hold shares of a (over Z264−1), using which
they locally compute shares of y = 2a. Now, P2 would assist in computing the LSB
of y as follows: From now on, we denote LSB(y) = y[0]. The first observation is that
for three numbers u, v, w such that u = v +w, u[0] = v[0]⊕w[0] if the addition does
not “wrap around” the ring and u[0] = u[0]⊕ v[0]⊕ 1 if addition wraps around. The
second observation is that if x is a random number chosen by P2 and is unknown to
P0 and P1, then it is okay for P0, P1 to learn r = y + x. This is because the secret
y is masked by random x. Hence, P2 gives secret shares of x as well as shares of

1MSB(x) is the leftmost bit in the 64-bit representation of x.
2In a group of order n, we have MSB(x) = 1 iff x > n/2 iff n > 2x− n > 0; if n is odd, then so

is 2x− n and it follows that MSB(x) = 1 iff LSB(2x) = 1.

25



x[0] to P0, P1 and they reconstruct r. Now, all that is left is to figure out whether
the addition y + x wraps around the ring or not. For this, the third observation is
that this addition wraps around if and only if the final sum is less than one of the
individual values – that is, it wraps around iff x > r. Thus, if we can compute shares
of x > r between P0 and P1, then we are done.

Next, we construct a protocol for comparison. We first define a functionality called
private compare (denoted by FPC). This three-party functionality assumes that P0

and P1 each have a share of the bits of ℓ-bit value x (over field Zp) as well as a common
number r and a random bit β as input. It computes the bit (x > r) (which is 1 if
x > r and 0 otherwise) and XOR masks it with the bit β. This output β ⊕ (x > r)
is given to P2. We implement this functionality by building on the techniques of [37,
87] and provide a more efficient variant. Note that this protocol requires parties to
have shares of bits of x over field Zp. These are provided to P0, P1 by P2. With these
protocols, we are ready to compute the ReLU′(·) function if P0 and P1 began with
shares of the input over an odd ring.

Now, we revisit the requirement of an odd ring. As we explained above, all of
this works, if we had shares of a over an odd ring. Now, we could execute our pro-
tocol over the ring ZN with N being odd. However doing so is fairly inefficient as
matrix multiplication over the ring Z264 (or Z232) is much faster. This is because
(as observed in [85]), native implementation of matrix multiplication over long (or
int) automatically implements the modulo operation over Z264 (or Z232) and many
libraries heavily optimize matrix multiplication over these rings, which give signifi-
cant efficiency improvements compared to operations over any other ring. Hence, we
provide a protocol that converts values (6= L− 1) that are secret shared over ZL into
shares over ZL−1. This protocol also uses the private compare protocol and may be
of independent interest.

Finally, this design (and our protocol) enables us to run our comparison protocol
(the protocol that realizes FPC above) over a small field Zp (we choose p = 67 con-
cretely) and this reduces the communication complexity significantly. Using these
protocols, we obtain our protocol for computing ReLU′(x) (the derivative of ReLU)
beginning with shares over Z264 .

Figure 3.1 shows the different secret sharing schemes used in protocols in Se-
cureNN. Specifically, it shows how various secret sharing schemes are used in ReLU
and Private Compare protocols.
Other non-linear functions. In this work, we describe protocols for ReLU, Maxpool,
their derivatives, and normalization or division. Maxpool, ReLU, and division are
implemented using ReLU′ and multiplication. Similar ideas can be used to obtain
efficient protocols for other non-linear activation functions such as Leaky ReLU,
piecewise linear functions (used to approximate sigmoid), and their derivatives. We
also construct an efficient protocol for the derivative of Maxpool exploiting specific
number-theoretic properties.

Matrix multiplication and Convolutions. An information-theoretic matrix
multiplication protocol over shares when 3 parties are involved is straightforward
using matrix-based Beaver multiplication triplets [11] and is omitted from the dis-
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Figure 3.1: Flow of different types of secret sharing schemes used in (a) ReLU, (b) Private
Compare.

cussion here. For our implementation we use Beaver triplets generated using PRFs.
Convolutions are implemented in a very similar manner to matrix multiplication.

Privacy against malicious adversaries. Since our protocols are fundamen-
tally information-theoretic, it is easy to show that all messages exchanged in the
protocol are individually uniformly random. As noted by Araki et al. [6], this
property then suffices to show that any two executions of the protocol with different
inputs are indistinguishable to the malicious adversary and subsequently that the
same protocols provide privacy against malicious adversaries. This guarantees that
a malicious server cannot learn anything about clients’ inputs even if it deviates
arbitrarily from the protocol.

3.2 Protocol Constructions
In this section, we describe various building blocks to our main protocols. Some
of these protocols deviate from the invariant described before, i.e., P0 and P1 do
not necessarily begin/end protocols with shares of input/output over ZL. Further,
P2 receives output in these protocols. A formal description of the functionalities
realized by these protocols is given in [112]. We provide the proofs of security for our
protocols in Appendix C.1 and A.3. We start with the simplest protocols (such as
those for matrix multiplication) and gradually build other protocols that are used in
the computation of non-linear functions.

3.2.1 Matrix Multiplication
Algorithm 1 describes our protocol for secure multiplication (functionality FMATMUL)
where parties P0 and P1 hold shares of X ∈ Zm×n

L and Y ∈ Zn×v
L and the functionality

outputs fresh shares of Z = X · Y to P0, P1.
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Algorithm 1 Mat. Mul. ΠMatMul({P0, P1}, P2):
Input: P0 & P1 hold (〈X〉L0 , 〈Y 〉L0 ) & (〈X〉L1 , 〈Y 〉L1 ) resp.
Output: P0 gets 〈X · Y 〉L0 and P1 gets 〈X · Y 〉L1 .

Common Randomness: P0 and P1 hold shares of zero matrices over Zm×v
L resp.;

i.e., P0 holds 〈0m×v〉L0 = U0 & P1 holds 〈0m×v〉L1 = U1

1: P2 picks random matrices A $←Zm×n
L and B $←Zn×v

L and generates for j ∈ {0, 1},
〈A〉Lj , 〈B〉Lj , 〈C〉Lj and sends to Pj, where C = A ·B.

2: For j ∈ {0, 1}, Pj computes 〈E〉Lj = 〈X〉Lj − 〈A〉Lj and 〈F 〉Lj = 〈Y 〉Lj − 〈B〉Lj .
3: P0 & P1 reconstruct E & F by exchanging shares.
4: For j ∈ {0, 1}, Pj outputs −jE · F + 〈X〉Lj · F + E · 〈Y 〉Lj + 〈C〉Lj + Uj.

Intuition. Our protocol relies on standard cryptographic technique for multiplication
of using Beaver triplets [11] generalized to the matrix setting. P2 generates these
triplet shares and sends to parties P0, P1.

3.2.2 Select Share
Algorithm 2 describes our 3-party protocol realizing the select share functionality
FSS, which is as follows: Parties P0, P1 hold shares of x, y over ZL. They also hold
shares of a selection bit α ∈ {0, 1} over ZL (L = 264). Parties P0, P1 get fresh shares
of x if α = 0 and fresh shares of y if α = 1 from the functionality.

Algorithm 2 SelectShare ΠSS({P0, P1}, P2):
Input: P0, P1 hold (〈α〉L0 , 〈x〉L0 , 〈y〉L0 ) and (〈α〉L1 , 〈x〉L1 , 〈y〉L1 ), resp.
Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z = (1− α)x+ αy.

Common Randomness: P0 and P1 hold shares of 0 over ZL denoted by u0 and
u1.

1: For j ∈ {0, 1}, Pj compute 〈w〉Lj = 〈y〉Lj − 〈x〉Lj
2: P0, P1, P2 invoke ΠMatMul({P0, P1}, P2) with Pj, j ∈ {0, 1} having input

(〈α〉Lj , 〈w〉Lj ) and P0, P1 learn 〈c〉L0 and 〈c〉L1 , resp.
3: For j ∈ {0, 1}, Pj outputs 〈z〉Lj = 〈x〉Lj + 〈c〉Lj + uj.

Intuition. We note that selecting between x and y can be arithmetically expressed
as (1−α) ·x+α ·y = x+α · (y−x). We compute the latter expression in our protocol
using one call to ΠMatMul for multiplying α and (y − x).

3.2.3 Private Compare
Algorithm 3 describes our 3-party protocol realizing the functionality FPC for com-
parison that is as follows: The parties P0 and P1 holds shares of bits of ℓ-bit integer x
in Zp (p = 67 and hence Zp is a Field), i.e., {〈x[i]〉p0}i∈[ℓ] and {〈x[i]〉

p
1}i∈[ℓ], respectively.

P0, P1 also hold an ℓ-bit integer r and a bit β. At the end of the protocol, P2 learns
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a bit β′ = β ⊕ (x > r), where (x > r) denotes the bit which is 1 when x > r over the
integers and 0 otherwise.

Algorithm 3 PrivateCompare ΠPC({P0, P1}, P2):
Input: P0, P1 hold {〈x[i]〉p0}i∈[ℓ] and {〈x[i]〉

p
1}i∈[ℓ], respectively, a common input r (an

ℓ bit integer) and a common random bit β.
Output: P2 gets a bit β ⊕ (x > r).

Common Randomness: P0, P1 hold ℓ common random values si ∈ Z∗
p for all

i ∈ [ℓ] and a random permutation π for ℓ elements. P0 and P1 additionally hold
ℓ common random values ui ∈ Z∗

p.
1: Let t = r + 1 mod 2ℓ.
2: For each j ∈ {0, 1}, Pj executes Steps 3–14:
3: for i = {ℓ, ℓ− 1, . . . , 1} do
4: if β = 0 then
5: 〈wi〉pj = 〈x[i]〉

p
j + jr[i]− 2r[i]〈x[i]〉pj

6: 〈ci〉pj = jr[i]− 〈x[i]〉pj + j +
ℓ∑

k=i+1

〈wk〉pj
7: else if β = 1 AND r 6= 2ℓ − 1 then
8: 〈wi〉pj = 〈x[i]〉

p
j + jt[i]− 2t[i]〈x[i]〉pj

9: 〈ci〉pj = −jt[i] + 〈x[i]〉
p
j + j +

ℓ∑
k=i+1

〈wk〉pj
10: else
11: If i 6= 1, 〈ci〉pj = (1− j)(ui + 1)− jui, else 〈ci〉pj = (−1)j · ui.
12: end if
13: end for
14: Send {〈di〉pj}i = π

({
si〈ci〉pj

}
i

)
to P2

15: For all i ∈ [ℓ], P2 computes di = Reconstp(〈di〉p0, 〈di〉p1) and sets β′ = 1 iff ∃i ∈ [ℓ]
such that di = 0.

16: P2 outputs β′.

Intuition. Our starting point is the 2-party comparison present in [37, 87]. We
build on this to give a much more efficient 3-party protocol. We want to compute
β′ = β ⊕ (x > r). That is, for β = 0, we compute x > r and for β = 1, we compute
1 ⊕ (x > r) ≡ (x ≤ r) ≡ (x < (r + 1)) over integers. We discuss the corner case of
r = 2ℓ − 1 below. In this case, x ≤ r is always true.

Consider the case of β = 0. In this case, β′ = 1 iff (x > r) or at the leftmost bit
where x[i] 6= r[i], x[i] = 1. We compute wi = x[i] ⊕ r[i] = x[i] + r[i] − 2x[i]r[i] and
c[i] = r[i]− x[i] + 1 +

∑ℓ
k=i+1wk. Since r is known to both P0, P1, shares of both wi

and ci can be computed locally. Now, we can prove that ∃ i.ci = 0 iff x > r. Hence,
both P0, P1 send shares of ci to P2 that reconstructs ci and looks for a 0. To ensure
security against a corrupt P2, we hide exact values of non-zero ci’s and position of (a
possible) 0 by multiplying with random si and permuting these values by a common
permutation π. These si and π are common to both P0 and P1.
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In the case when β = 1 and r 6= 2ℓ − 1, we compute (r + 1) > x using similar
logic as above. In the corner case of r = 2ℓ − 1, both parties P0, P1 know that result
of x ≤ r ≡ (r+1) > x over integers should be true. Hence, they together pick shares
of ci such that there is exactly one 0. This is done by P0, P1 having common values
ui that they use to create a valid share of a 0 and ℓ − 1 shares of 1 (see Step 11).
Note that for the re-randomization using si’s to work, it is crucial that we work over
a field such as Zp.

3.2.4 Share Convert
Algorithm 4 describes our three-party protocol for converting shares over ZL to ZL−1

realizing the functionality FSC (again, L = 264). Here, parties P0, P1 hold shares of
〈a〉L such that a 6= L− 1. At the end of the protocol, P0, P1 hold fresh shares of same
value over L−1, i.e., 〈a〉L−1. In this algorithm, κ := wrap(x, y, L) is 1 if x+y ≥ L over
integers and 0 otherwise. That is, κ denotes the wrap-around bit for the computation
x+ y mod L.
Intuition: Let θ = wrap(〈a〉L0 , 〈a〉L1 , L). Now, we note that if θ = 1, i.e., if the
original shares wrapped around L, then we need to subtract 1, else original shares are
also valid shares of same value of L − 1. Hence, in the protocol we compute shares
of bit θ over L − 1 and subtract from original shares locally. This protocol makes
use of novel modular arithmetic to securely compute these shares of θ, an idea which
is potentially of independent interest. We explain these relations in the correctness
proof below.

Lemma 3.1. Protocol ΠSC({P0, P1}, P2) in Algorithm 4 securely realizes FSC.

Proof. For correctness we need to prove that ReconstL−1(〈y〉L−1
0 , 〈y〉L−1

1 ) =
ReconstL(〈a〉L0 , 〈a〉L1 ) = a. Looking at Step 11 of the protocol and the intuition above,
it suffices to prove that ReconstL−1(〈θ〉L−1

0 , 〈θ〉L−1
1 ) = θ = wrap(〈a〉L0 , 〈a〉L1 , L).

First, by correctness of protocol ΠPC, η′ = η′′ ⊕ (x > r − 1). Next, let
η = ReconstL−1(〈η〉L−1

0 , 〈η〉L−1
1 ) = η′ ⊕ η′′ = (x > r − 1). Next, note that

x ≡ a+ r mod L. Hence, wrap(a, r, L) = 0 iff x > r− 1. By the correctness of wrap,
following relations hold over the integers:

(A) r = 〈r〉L0 + 〈r〉L1 − αL.
(B) 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj − βjL.
(C) x = 〈ã〉L0 + 〈ã〉L1 − δL.
(D) x = a+ r − (1− η)L.
(E) Let θ be such that a = 〈a〉L0 + 〈a〉L1 − θL.

Computing, (1) − (2) − (3) + (4) + (5) gives us θ = β0 + β1 − α + δ + η − 1.
This is exactly what the parties P0 and P1 calculate in Step 10. We prove security in
Appendix C.1. □
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Algorithm 4 ShareConvert ΠSC({P0, P1}, P2):
Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively such that ReconstL(〈a〉L0 , 〈a〉L1 ) 6= L−1.
Output: P0, P1 get 〈a〉L−1

0 and 〈a〉L−1
1 .

Common Randomness: P0, P1 hold a random bit η′′, a random r ∈ ZL, shares
〈r〉L0 , 〈r〉L1 , α = wrap(〈r〉L0 , 〈r〉L1 , L) and shares of 0 over ZL−1 denoted by u0 and
u1.

1: For each j ∈ {0, 1}, Pj executes Steps 2–3
2: 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj and βj = wrap(〈a〉Lj , 〈r〉Lj , L).
3: Send 〈ã〉Lj to P2.

4: P2 computes x = ReconstL(〈ã〉L0 , 〈ã〉L1 ) and δ = wrap(〈ã〉L0 , 〈ã〉L1 , L).
5: P2 generates shares {〈x[i]〉pj}i∈[ℓ] and 〈δ〉L−1

j for j ∈ {0, 1} and sends to Pj.
6: P0, P1, P2 invoke3ΠPC({P0, P1}, P2) with Pj, j ∈ {0, 1} having input(
{〈x[i]〉pj}i∈[ℓ], r − 1, η′′

)
and P2 learns η′.

7: For j ∈ {0, 1}, P2 generates 〈η′〉L−1
j and sends to Pj.

8: For each j ∈ {0, 1}, Pj executes Steps 9–11
9: 〈η〉L−1

j = 〈η′〉L−1
j + (1− j)η′′ − 2η′′〈η′〉L−1

j

10: 〈θ〉L−1
j = βj + (1− j) · (−α− 1) + 〈δ〉L−1

j + 〈η〉L−1
j

11: Output 〈y〉L−1
j = 〈a〉Lj − 〈θ〉L−1

j + uj (over L− 1)

3.2.5 Compute MSB
Algorithm 5 describes our 3-party protocol realizing the functionality FMSB that com-
putes the most significant bit4 (MSB) of a value a ∈ ZL−1. P0, P1 hold shares of a
over odd ring ZL−1 and end with shares of MSB(a) over ZL.
Intuition: Note that when the shares of the private input (say a) are over an odd
ring (such as after using ΠSC), the MSB computation can be converted into an LSB
computation. More precisely, over an odd ring, MSB(a) = LSB(y), where y = 2a.
Now, P2 assists in computation of shares of LSB(y) as follows: P2 picks a random
integer x ∈ ZL−1 and sends shares of x over ZL−1 and shares of x[0] over ZL to
P0, P1. Next, P0, P1 compute shares of r = y + x and reconstruct r by exchanging
shares. We note that LSB(y) = y[0] = r[0]⊕x[0]⊕wrap(y, x, L− 1) over an odd ring.
Also, wrap(y, x, L− 1) = (x > r), which can be computed using comparison protocol
ΠPC. To enable this, P2 also secret shares {x[i]}i∈[ℓ] over Zp. Steps 6-10 compute the
equation LSB(y) = y[0] = r[0] ⊕ x[0] ⊕ (x > r) by using the arithmetic equation for
xor computation (Note that x ⊕ r = x + r − 2xr; when one of x or y is public and
known to both P0 and P1, then this computation can be done over the shares locally.
When both are private and kept as shares, this computation is done using one call to
the multiplication functionality, i.e., Step 9 in Algorithm 5).

3In the corner case when r = 0, both P0 and P1 set the output of ΠPC to be 1 and execute it.
This is similar to the other corner case discussed in Section 3.2.3.

4Most significant bit of a number is defined as the value of the leftmost bit in the bit represen-
tation.
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Algorithm 5 ComputeMSB ΠMSB({P0, P1}, P2):
Input: P0, P1 hold 〈a〉L−1

0 and 〈a〉L−1
1 , respectively.

Output: P0, P1 get 〈MSB(a)〉L0 and 〈MSB(a)〉L1 .
Common Randomness: P0, P1 hold a random bit β and random shares of 0 over
L, denoted by u0 and u1 resp.

1: P2 picks x $← ZL−1. Next, P2 generates 〈x〉L−1
j , {〈x[i]〉pj}i, 〈x[0]〉Lj for j ∈ {0, 1}

and sends to Pj.
2: For j ∈ {0, 1}, Pj computes 〈y〉L−1

j = 2〈a〉L−1
j and 〈r〉L−1

j = 〈y〉L−1
j + 〈x〉L−1

j .
3: P0, P1 reconstruct r by exchanging shares.
4: P0, P1, P2 call ΠPC({P0, P1}, P2) with Pj, j ∈ {0, 1} having input(
{〈x[i]〉pj}i∈[ℓ], r, β

)
and P2 learns β′.

5: P2 generates 〈β′〉Lj and sends to Pj for j ∈ {0, 1}.
6: For j ∈ {0, 1}, Pj executes Steps 7–8
7: 〈γ〉Lj = 〈β′〉Lj + jβ − 2β〈β′〉Lj
8: 〈δ〉Lj = 〈x[0]〉Lj + jr[0]− 2r[0]〈x[0]〉Lj
9: P0, P1, P2 call ΠMatMul({P0, P1}, P2) with Pj, j ∈ {0, 1} having input (〈γ〉Lj , 〈δ〉Lj )

and Pj learns 〈θ〉Lj .
10: For j ∈ {0, 1}, Pj outputs 〈α〉Lj = 〈γ〉Lj + 〈δ〉Lj − 2〈θ〉Lj + uj.

Next, we describe all our main protocols for functionalities such as linear layer,
ReLU, the derivative of ReLU (ReLU′), division needed for normalization during train-
ing, Maxpool, and its derivative. We maintain the invariant that parties P0 and P1

begin with “fresh” shares of input value (over ZL, L = 264 ) and output a “fresh”
share of the output value (again over ZL) at the end of the protocol. Party P2 takes
the role of “assistant” in all protocols and has no input or output.

3.2.6 Linear and Convolutional Layer
We note that a linear (or fully connected) layer in an NN is exactly a matrix multi-
plication. Similarly, a convolutional layer can also be expressed as a (larger) matrix
multiplication. As an example the 2-dimensional convolution of a 3× 3 input matrix
X with a kernel K of size 2×2 can be represented by the matrix multiplication shown
below.

Conv2d

x1 x2 x3
x4 x5 x6
x7 x8 x9

 ,[k1 k2
k3 k4

]=


x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9

×

k1
k2
k3
k4


For a generalization, see e.g. [104] for an exposition on convolutional layers. Hence

both these layers can be directly implemented using Algorithm 1 from Section 3.2.1.
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3.2.7 Derivative of ReLU
Algorithm 6 describes our 3-party protocol for realizing the functionality FDReLU that
computes the derivative of ReLU, denoted by ReLU′. Parties P0, P1 hold secret shares
of a over ring ZL and end up with secret shares of ReLU′(a) over ZL. Note that
ReLU′(a) = 1 if MSB(a) = 0, else ReLU′(a) = 0.

Algorithm 6 ReLU′, ΠDReLU({P0, P1}, P2):
Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.
Output: P0, P1 get 〈ReLU′(a)〉L0 and 〈ReLU′(a)〉L1 .

Common Randomness: P0, P1 hold random shares of 0 over ZL, denoted by u0
and u1 resp.

1: For j ∈ {0, 1}, parties Pj computes 〈c〉Lj = 2〈a〉Lj .
2: P0, P1, P2 run ΠSC({P0, P1}, P2) with P0, P1 having inputs 〈c〉Lj & 〈c〉L1 & P0, P1

learn 〈y〉L−1
0 & 〈y〉L−1

1 , resp.
3: P0, P1, P2 run ΠMSB({P0, P1}, P2) with Pj, j ∈ {0, 1} having input 〈y〉L−1

j &
P0, P1 learn 〈α〉L0 & 〈α〉L1 , resp.

4: For j ∈ {0, 1}, Pj outputs 〈γ〉Lj = j − 〈α〉Lj + uj.

Intuition: As is clear from the function ReLU′ itself, the protocol computes the shares
of MSB(a) and flips it to compute ReLU′(a). Recall that the protocol ΠMSB expects
shares of a over ZL−1. Hence, we need to convert shares over ZL to fresh shares over
ZL−1 of the same value. Recall that for correctness of the share convert protocol, we
require that value is not equal to L− 1. This is ensured by first computing shares of
c = 2a and then calling ΠSC. We ensure5 that ReLU′(a) = ReLU′(c) by requiring that
a ∈ [0, 2k) ∪ (2ℓ − 2k, 2ℓ − 1], where k < ℓ− 1.

3.2.8 ReLU
Algorithm 7 describes our 3-party protocol for realizing the functionality FReLU that
computes ReLU(a). Parties P0, P1 hold secret shares of a over ring ZL and end up
with secret shares of ReLU(a) over ZL. Note that ReLU(a) = a if MSB(a) = 0, else 0.
That is, ReLU(a) = ReLU′(a) · a.
Intuition: Our protocol implements the above relation by using one call each to
ΠDReLU and ΠMatMul. Note that ΠMatMul is invoked for multiplying two matrices of
dimension 1× 1 (or just one integer multiplication).

3.2.9 Division
We discuss our 3-party protocol Algorithm 8 realizing the functionality FDIV. Parties
P0, P1 hold shares of x and y over ZL. At the end of the protocol, parties P0, P1 hold
shares of bx/yc over ZL when y 6= 0.

5This essentially means that the absolute value of a is not very large, and in particular not larger
than 2k. This is not a limitation in any of the ML applications that we work with.
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Algorithm 7 ReLU, ΠReLU({P0, P1}, P2):
Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.
Output: P0, P1 get 〈ReLU(a)〉L0 and 〈ReLU(a)〉L1 .

Common Randomness: P0, P1 hold random shares of 0 over ZL, denoted by u0
and u1 resp.

1: P0, P1, P2 run ΠDReLU({P0, P1}, P2) with Pj, j ∈ {0, 1} having input 〈a〉Lj and
P0, P1 learn 〈α〉L0 and 〈α〉L1 , resp.

2: P0, P1, P2 call ΠMatMul({P0, P1}, P2) with Pj, j ∈ {0, 1} having input (〈α〉Lj , 〈a〉Lj )
and P0, P1 learn 〈c〉L0 and 〈c〉L1 , resp.

3: For j ∈ {0, 1}, Pj outputs 〈c〉Lj + uj.

Algorithm 8 Division: ΠDIV({P0, P1}, P2)

Input: P0, P1 hold (〈x〉L0 , 〈y〉L0 ) and (〈x〉L1 , 〈y〉L1 ), resp.
Output: P0, P1 get 〈x/y〉L0 and 〈x/y〉L1 .

Common Randomness: Pj, j ∈ {0, 1} hold ℓ shares 0 over ZL denoted by wi,0

and wi,1 for all i ∈ [ℓ] resp. They additionally also hold another share of 0 over
ZL, denoted by s0 and s1.

1: Set uℓ = 0 and for j ∈ {0, 1}, Pj holds 〈uℓ〉Lj (through the common randomness).
2: for i = {ℓ− 1, . . . , 0} do
3: Pj, j ∈ {0, 1} compute 〈zi〉Lj = 〈x〉Lj − 〈ui+1〉Lj − 2i〈y〉Lj + wi,j.
4: P0, P1, P2 run ΠDReLU({P0, P1}, P2) with Pj, j ∈ {0, 1} having input 〈zi〉Lj and
P0, P1 learn 〈βi〉L0 and 〈βi〉L1 , resp.

5: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj, j ∈ {0, 1} having input
(〈βi〉Lj , 〈2iy〉Lj ) and P0, P1 learn 〈vi〉L0 and 〈vi〉L1 , resp.

6: Pj, j ∈ {0, 1} compute 〈ki〉Lj = 2i · 〈βi〉Lj .
7: For j ∈ {0, 1}, Pj computes 〈ui〉Lj = 〈ui+1〉Lj + 〈vi〉Lj .
8: end for
9: For j ∈ {0, 1}, Pj outputs 〈q〉Lj =

∑ℓ−1
i=0〈ki〉Lj + sj.
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Intuition: Our protocol implements long division where the quotient is computed
bit-by-bit sequentially starting from the most significant bit. In each iteration, we
compute the current dividend by subtracting the correct multiple of the divisor. Then
we compare the current dividend with a multiple of the divisor (2iy in round i).
Depending on the output of the comparison, ith bit of the quotient is 0 or 1. This
comparison can be written as a comparison with 0 and hence can be computed using a
single call to ΠDReLU. We use this selection bit to select between 0 and 2i for quotient
and 0 and 2iy for what to subtract from dividend. This selection can be implemented
using ΠMatMul (similar to ReLU computation). Hence, division protocol proceeds in
iterations and each iteration makes one call to ΠDReLU and one call6 to ΠMatMul.

3.2.10 Maxpool
Algorithm 9 describes our 3-party protocol realizing the functionality FMAXPOOL to
compute the maximum of n values. Parties P0, P1 hold shares of {xi}i∈[n] over ZL

and end up with fresh shares of max({xi}i∈[n]).
Intuition: The protocol implements the max algorithm that runs in (n−1) sequential
steps. We start with max1 = x1. In step i, we compute the shares of maxi =
max(x1, . . . , xi) as follows: We compute shares of wi = xi−maxi−1. Then, we compute
shares of βi = ReLU′(wi) that is 1 if xi ≥ maxi−1 and 0 otherwise. Next, we use
ΠSS to select between maxi−1 and xi using βi to compute maxi. Note, that in a
similar manner, we can also calculate the index of maximum value, i.e., k such that
xk = max({xi}i∈[n]). This is done in steps 6&7. Computing the index of max value
is required while doing prediction as well as to compute the derivative of Maxpool
activation function needed for back-propagation during training.

3.2.11 Derivative of Maxpool
The derivative of the Maxpool function (functionality FDMAXPOOL) is defined as the
unit vector with a 1 only in the position with the maximum value. Here, we describe
the more efficient Algorithm 10 that works for the special (and often-used) case of
2× 2 Maxpool, where n = 4. In general, this algorithm works when n divides L. For
the more general case, we provide an algorithm in Appendix C.1.
Intuition: The key observation behind this protocol is that when n divides L (i.e.,
n | L), we have that a mod n = (a mod L) mod n. The first step that P0 and P1 run
is ΠMP that gives them shares of the index ind ∈ [n] with the maximum value. These
shares are over L and must be converted into shares of the unit vector Eind which is
a length n vector with 1 in position ind and 0 everywhere else. P0 and P1 share a
random r ∈ Zn and have P2 reconstruct k = (ind + r) mod n. P2 then creates shares
of Ek and sends the shares back to P0 and P1 who “left-shift” these shares by r to
obtain shares of Eind. This works because a mod n = (a mod L) mod n is true when
n | L.

6Note that multiplication with 2i can be done locally.
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Algorithm 9 Maxpool ΠMP({P0, P1}, P2):
Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.
Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z = Max({xi}i∈[n]).

Common Randomness: P0 and P1 hold two shares of 0 over ZL denoted by u0
and u1 and v0 and v1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and 〈ind1〉Lj = j.
2: for i = {2, . . . , n} do
3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj − 〈maxi−1〉Lj
4: P0, P1, P2 call ΠDReLU({P0, P1}, P2) with Pj, j ∈ {0, 1} having input 〈wi〉Lj and
P0, P1 learn 〈βi〉L0 and 〈βi〉L1 , resp.

5: P0, P1, P2 call ΠSS({P0, P1}, P2) with Pj, j ∈ {0, 1} having input
(〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj ) and P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , resp.

6: For j ∈ {0, 1}, Pj sets 〈ki〉Lj = j · i.
7: P0, P1, P2 call ΠSS({P0, P1}, P2) with Pj, j ∈ {0, 1} having input

(〈βi〉Lj , 〈indi−1〉Lj , 〈ki〉Lj ) and P0, P1 learn 〈indi〉L0 and 〈indi〉L1 , resp.
8: end for
9: For j ∈ {0, 1}, Pj outputs (〈maxn〉Lj + uj, 〈indn〉Lj + vj).

Algorithm 10 Efficient Derivative of n1 × n2 Maxpool Πn1xn2DMP({P0, P1}, P2) with
n | L and n = n1n2:
Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.
Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], resp., where zi = 1, when xi =

Max({xi}i∈[n]) and 0 otherwise.
Common Randomness: P0 and P1 hold shares of 0 over Zn

L denoted by U0 and
U1 and a random r ∈ ZL.

1: P0, P1, P2 call FMAXPOOL with Pj, j ∈ {0, 1} having input {〈xi〉Lj }i∈[n], to obtain
〈indn〉Lj resp. (from the second part of FMAXPOOL’s output).

2: P0 sends 〈k〉L0 = 〈indn〉L0 + r to P2, while P1 sends 〈k〉L1 = 〈indn〉L1 to P2.
3: P2 computes t = ReconstL(〈k〉L0 , 〈k〉L1 ), computes k = t mod n and creates shares

of Ek, denoted by 〈E〉L0 and 〈E〉L1 , and sends the shares to P0 and P1 resp.
4: P0 and P1 locally “cyclic-shift” their shares by g = r mod n. That

is, let 〈E〉Lj = (〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ). Pj computes 〈D〉Lj as
(〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · , 〈E(n−1−g mod n)〉Lj ).

5: Pj, j ∈ {0, 1} outputs 〈D〉Lj + Uj.
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3.2.12 End-to-end Protocols
Our main protocols can be easily put together to execute training on a wide class of
NNs. For example, consider Network-A, 3-layer NN from SecureML that consists of a
fully-connected layer, followed by a ReLU, followed by another fully-connected layer,
followed by another ReLU, followed by the function ASM(ui) =

ReLU(ui)∑
ReLU(ui)

(for further
details on this network, we refer the reader to [85]). To implement this, we first invoke
ΠMatMul, followed by ΠReLU, then again followed by ΠMatMul and ΠReLU and finally we
invoke ΠDIV to compute ASM(·)7. Back-propagation is computed by making calls to
ΠMatMul as well and ΠDReLU with appropriate dimensions8. Similarly, we can also do a
general CNN with other activations such as Maxpool, AvgPool. We remark that we
can put together these protocols easily since our protocols all maintain the invariant
that parties begin with arithmetic shares of inputs and complete the protocol with
arithmetic shares of the output.

3.3 Theoretical Evaluation
In this section, we describe the theoretical overheads of the building block protocols
as well as the main protocols. We defer the proofs of the protocols to Appendix A.

3.3.1 Overheads of Supporting Protocols
The communication and round complexity of our supporting protocols is provided in
Table 3.1. MatMulm,n,v denotes matrix multiplication of an m × n matrix with an
n× v matrix. The first row states the complexity of MatMulm,n,v using secure Beaver
triplets. In our implementation, we generate the triplets using PRFs as follows: P0

and P2 share a PRF key and use it to generate 〈A〉L0 , 〈B〉L0 , 〈C〉L0 locally. Similarly,
P1 and P2 share a PRF key and use it to generate 〈A〉L1 , 〈B〉L1 locally. Now, P2 sets
〈C〉L1 = ReconstL(〈A〉L0 , 〈A〉L1 ) · ReconstL(〈B〉L0 , 〈B〉L1 ) − 〈C〉L0 and send to P1. This
reduces the communication of multiplication by half. All other complexities are for
single elements and use this optimized version of multiplication.

3.3.2 Communication and Rounds
The round and communication complexity of our main protocols are presented in
Table 3.2. The function Linearm,n,v denotes a matrix multiplication of dimension
m × n with n × v. Conv2dm,i,f,o denotes a convolutional layer with input m ×m, i
input channels, a filter of size f × f , and o output channels. lD denotes precision
of bits. Maxpooln and DMPn denotes Maxpool and its derivative over n elements.
For ReLU and DMPn, the overheads in addition to DReLU and Maxpooln respectively
are presented as these protocols are always implemented together in an NN. All

7ASM(·) consists of a summation and a division. Summation is a local computation and does not
require a protocol to be computed.

8We note that ΠDReLU is called as part of ΠReLU in forward propagation and its value is stored
for back-propagation
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Table 3.1: Round & communication complexity of building blocks.

Protocol Rounds Communication
MatMulm,n,v 2 2(2mn+ 2nv +mv)ℓ
MatMulm,n,v (with PRF) 2 (2mn+ 2nv +mv)ℓ
SelectShare 2 5ℓ
PrivateCompare 1 2ℓ log p
ShareConvert 4 4ℓ log p+ 6ℓ
Compute MSB 5 4ℓ log p+ 13ℓ

Table 3.2: Round & communication complexity of main protocols.

Protocol Rounds Communication
Linearm,n,v 2 (2mn+ 2nv +mv)ℓ
Conv2dm,i,f,o 2 (2m2f 2i+ 2f 2oi+m2o)ℓ
DReLU 8 8ℓ log p+ 19ℓ
ReLU (after DReLU) 2 5ℓ
NORM(lD) or DIV(lD) 10lD (8ℓ log p+ 24ℓ)lD
Maxpooln 9(n− 1) (8ℓ log p+ 29ℓ)(n− 1)
DMPn (after Maxpool) 2 2(n+ 1)ℓ

communication is measured for ℓ-bit inputs and p denotes the field size (which is 67
in our case). All of the complexities are presented using the optimized complexity of
multiplication that used PRFs for correlated randomness.

Our gains mainly come from the secure evaluation of non-linear functions such as
ReLU and Maxpool and their derivatives. Prior works such as SecureML [85], Min-
iONN [77], Gazelle [64], etc., took a garbled circuit-based approach to evaluate these
functions, i.e., after completion of an arithmetic (linear) computation such as matrix
multiplication, they ran a protocol to convert shares of intermediary values into an
encoding suitable for garbled circuits. The non-linear function was then evaluated
using the garbled circuit after which shares were once again converted back to be
suitable for arithmetic computation. This approach leads to a multiplicative factor
communication overhead proportional to the security parameter κ, as garbled cir-
cuits require communicating encodings proportional to κ, for every bit in the circuit.
Overall, this leads to a communication complexity > 768ℓ for every ℓ-bit input [41].
As shown in [41], this cost of conversion to garbled circuits is 6κℓ, and all previous
works incur this cost. In our approach, we provide new protocols to compute such
non-linear activation functions, while continuing to retain arithmetic shares of the
output values. For example, the ReLU protocol that we construct avoids paying κ
multiplicative overhead and has communication complexity of 8ℓ log p+24ℓ, which is
approximately 88ℓ (when p = 67 as is in our setting). This leads to > 8× improvement
in the communication complexity of the protocols for non-linear functions.
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3.4 Experimental Evaluation
SecureNN is implemented in about 7400 lines of C++ code with the use of standard
libraries. We use the Eigen Library [44] for faster matrix multiplications. The ring is
set to Z264 and we use the uint64_t native C++ datatype for all variables. The source
code is available at https://www.github.com/snwagh/securenn-public.git and
potentially of interest is also the Falcon linked in the following chapter.

3.4.1 System Details
We test our prototype by running experiments over Amazon EC2 c4.8x large instances
in two environments, respectively modeling a LAN and WAN setting.

LAN setting. We use 3 Amazon EC2 c4.8xlarge machines running Ubuntu in
the same region. The average bandwidth measured was 625MB/s and the average
ping time was 0.22ms.
WAN setting. In the WAN setting, we rent machines in different geographical
regions with the same machine specifications as in the LAN setting. The average
bandwidth measured was 40MB/s and the average ping time was 58ms.

Number encoding. Typical NNs work over floating-point numbers. As observed
by all prior works, to make them compatible with efficient cryptographic techniques,
they must be encoded into fixed-point form. We use the methodology from [85] to
support fixed-point arithmetic in an integer ring (described in Appendix A.1). The
fixed-point numbers have 13 bits in their fractional part (cleartext training to get
accuracy numbers is also done with these parameters).

3.4.2 Summary of Experiments
We develop a prototype of SecureNN. We test the performance of our protocols by
training 3 different NNs over the MNIST dataset [83]. We also evaluate SecureNN
on secure inference benchmarks in Section 3.4.5. Finally, in Section 3.4.6, we present
microbenchmarks that measure the performance of various sub-protocols implemented
in SecureNN such as Linear Layer, Convolutional Layer, ReLU, and Maxpool (and
its derivatives) that enables the estimation of the performance cost of other networks
using the above functions.

For secure training, we run multiple iterations (10) and take the average - for
each iteration, we measured the time for 10 forward-backward passes and used that
to extrapolate the numbers for 15 epochs (7000 iterations). Secure inference timings
are also averaged over 10 iterations. The learning rate is 2−5 in all experiments, except
in the SecureML [85] network, where we retain their learning rate of 2−7. In all our
experiments, we report overall execution time (and do not split execution time into an
offline, data independent phase, and an online, data dependent phase) and treat the
same as online time as well. Our experiments show that our total execution times are
better than even just the online times of previous works. If we split our work (e.g.,
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Table 3.3: Secure training execution times for batch size 128.

Epochs Accuracy LAN (hours) WAN (hours)
Network-A 15 93.4% 1.03 7.83

Network-B
5 97.94% 5.8 17.99
10 98.05% 11.6 35.99
15 98.77% 17.4 53.98

Network-C
5 98.15% 9.98 30.66
10 98.43% 19.96 61.33
15 99.15% 29.95 91.99

triplet generation for multiplication) to an offline phase, our online improvements
would be even better.

3.4.3 Neural Networks
For benchmarking and comparison, we consider four NN architectures performing
training/inference over the MNIST dataset [83] for hand-written digit recognition9.
Network-A is a 3-layer DNN from [85], Network-B is a 4-layer CNN from [77, 84],
Network-C is a 4-layer CNN from [76], and Network-D is a 3-layer CNN from [95,
84]. Note that Network-B, Network-C, Network-D (here) correspond to Network-C,
LeNet, and Network-B respectively in Section 2.5.

3.4.4 Secure Training
We evaluate our protocols for secure training in both the LAN and WAN settings
over the Networks-A, B, and C listed above. In many cases, the networks we train,
achieve more than 99% accuracy for inference (on test dataset). We remark that we
are the first work to show the feasibility of secure training on large and complex NNs
such as CNNs that achieve high levels of accuracy. We vary the epochs between 5
and 15 for all networks except Network-A which does not achieve good accuracy for
smaller epochs and vary the batch size between 4 and 128 for Networks-B and C.
Table 3.3 presents a summary of our results in the LAN/WAN setting as a function of
the number of epochs for training (batch size fixed to 128), while Table 3.4 presents
the results when the batch size is varied and the number of epochs is fixed to 5.

Comparison with prior work. The only prior work to consider NN training was
SecureML [85] that considers Network-A only. They give implementations for both
2- and 3-server settings on similar hardware and network settings – we quote exper-
imental numbers from their paper. We provide a comparison of our protocols with
their work in Table 3.7. In the LAN setting, our protocol is roughly 6.8× faster than

9This dataset has 60,000 training samples of handwritten digits. Each image is a 28-by-28 pixel
square, with each pixel represented using 1 byte. The inference set contains 10,000 images.
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Table 3.4: Secure training execution times for 5 epochs.

Batch size Accuracy LAN (hours) WAN (hours)

Network-B
4 99.15% 9.98 112.71
16 98.99% 8.34 36.46
128 97.94% 5.8 17.99

Network-C
4 99.01% 18.31 123.96
16 99.1% 13.43 46.2
128 98.15% 9.98 30.66

Table 3.5: Single image inference time comparison of various protocols in the LAN setting.

Framework Run-time (s) Communication (MB)
Offline Online Total Offline Online Total

Network-A SecureML 4.7 0.18 4.88 - - -
SecureNN 0 0.043 0.043 0 2.1 2.1

Network-B
MiniONN 3.58 5.74 9.32 20.9 636.6 657.5
Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

SecureNN 0 0.13 0.13 0 8.86 8.86
Network-C SecureNN 0 0.23 0.23 0 18.94 18.94

Network-D

DeepSecure - - 9.67 - - 791
Chameleon 3PC 1.34 1.36 2.7 7.8 5.1 12.9

Gazelle 0.15 0.05 0.20 5.9 2.1 8.0
SecureNN 0 0.076 0.076 0 4.05 4.05

their 3-party protocol and 79× faster than their 2-party protocol. In the WAN set-
ting, our improvements are even more dramatic and we get an improvement of 553×
over the 2-party protocol10. Furthermore, SecureML split their times into a slow
(data-independent) offline phase and a faster (data-dependent) online phase. Even
comparing only their online time with our overall 3PC time, we obtain an improve-
ment of 1.16× over their 2PC and a 2.7× improvement over their 3PC (their 3PC
trades off some offline cost with a larger online cost).

3.4.5 Secure Inference
We also evaluate our protocols for the task of secure inference for Networks-A, B,
C, and D. These networks can either be a result of secure training using the 3PC
protocol and are secret shared between P0 and P1, or a trained model can be secret
shared between P0 and P1 at the beginning of the protocol.
Comparison with prior work. A sequence of previous works have considered a
single secure inference in the LAN setting for various networks. Table 3.5 summarizes
our comparison with state-of-the-art secure inference protocols. Networks-A and B
were considered in SecureML [85], MiniONN [77], and Gazelle [64] using different

10Authors of SecureML do not provide numbers for their 3-party protocol in the WAN setting.
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Table 3.6: Prediction timings for batch size 1 vs 128 for SecureNN on Networks A-D over MNIST.

LAN (s) WAN (s) Comm (MB)
Batch size → 1 128 1 128 1 128
Network-A 0.043 0.38 2.43 2.79 2.1 29
Network-B 0.13 7.18 3.93 21.99 8.86 1066
Network-C 0.23 10.82 4.08 30.45 18.94 1550
Network-D 0.076 2.6 3.06 8.04 4.05 317.7

techniques for secure computation. All these works used similar hardware and net-
work settings as our LAN experiments and we quote experimental numbers from the
respective papers.

Each of these works splits its computation into an input-independent offline phase
and an input-dependent online phase. In our protocols, we do not do this split and
count all cost as online cost – hence, the offline cost is 0. Our protocols in the 3PC
setting achieve roughly 3× improvement in small networks that have a small number
of non-linear operations (such as Network-D) and between 6×-113× improvements in
some larger networks. In fact, in most cases, especially for realistic size networks, our
total time is lower than the online time of previous best protocols (ignoring the offline
time). We are the first to evaluate on Network-C (which is considerably larger in size)
and the table shows our run-time and communication. Finally, for Network-D, we
also compare our protocols with the 3PC protocols in Chameleon [95]. This shows
SecureNN improves on prior work by about 35×.

In all cases, our performance gains can be attributed to much better communi-
cation complexity of our protocols compared to previous works (see comparison in
Table 3.5). In particular, as mentioned before, we avoid the use of garbled circuits
for the non-linear activation functions such as ReLU. In all previous works, garbled
circuits are the major factor in large communication.
Single vs. Batch Prediction. Table 3.6 summarizes our results for secure inference
over different networks for 1 prediction and batch of 128 predictions in both the LAN
and WAN settings. Due to the use of matrix-based Beaver triplets for secure multi-
plication protocol in linear and convolutional layers, and batching of communication,
the time for multiple predictions grows sub-linearly. SecureML also did predictions
for batch size 100 for Network-A and took 14s and 143s in the LAN and the WAN
settings, respectively. In contrast, we take only 0.38s and 2.79s for 128 predictions
using the 3PC protocol.
Comparison with ABY3 [84]. ABY3 considers a similar set-up as SecureNN
but develops different techniques for matrix multiplication and non-linear operations.
This results in protocols with different communication complexity with performance
depending on the network architecture and hardware. For instance, ABY3 requires
0.5MB of communication for inference on Network-A (SecureNN requires 2.1MB)
while it requires 5.2MB of communication over Network-D (SecureNN requires
4.05MB).
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Table 3.7: Training time comparison for Network A for batch size 128 and 15 epochs with
SecureML [85].

Framework LAN (hr) WAN (hr)
Offline Online Total Offline Online Total

Network-A
SecureML 2PC 80.5 1.2 81.7 4277 59 4336
SecureML 3PC 4.15 2.87 7.02 - - -

SecureNN 0 1.03 1.03 0 7.83 7.83

3.4.6 Microbenchmarks
Table 3.8 presents microbenchmark timings for popular functions used in ML algo-
rithms for various sizes. All timings are averaged over 10 iterations. The overheads
for DMP and ReLU are additional over the costs of Maxpool and DReLU respectively
as these pairs of protocols are always used together in training.

Table 3.8: Microbenchmarks in the LAN & WAN settings.

Protocol Dimension LAN (ms) WAN (ms) Comm. (MB)

Conv2dm,f,i,o

8, 5, 16, 50 3.8 28.4 0.42
28, 3, 1, 20 1.8 26.5 0.2
28, 5, 1, 20 2.8 27.5 0.33

MatMulm,n,v

1, 100, 1 0.33 25.2 0.0032
1, 500, 100 4.8 29.4 0.81
784, 128, 10 9.7 34.3 1.69

Maxpool
8× 8× 50, 4× 4 59.7 3062.2 2.23
24× 24× 16, 2× 2 61.1 672.6 5.14
24× 24× 20, 2× 2 62.6 685 6.43

DMP
8× 8× 50, 4× 4 1.9 51.6 0.18
24× 24× 16, 2× 2 4.8 54.2 0.52
24× 24× 20, 2× 2 4.9 55.2 0.65

DReLu
64× 16 11.2 161.9 0.68
128× 128 109.8 288.7 10.88
576× 20 71.5 232.9 7.65

ReLU
64× 16 0.42 25.3 0.04
128× 128 2.8 27.1 0.66
576× 20 2.5 26.6 0.46

3.5 Summary
We develop new 3-party secure computation protocols for a variety of NN training and
prediction algorithms such that no single party learns any information about the data.
Our work makes three fundamental contributions: first, it is the first work to enable
secure NN training of large networks such as CNNs that have accuracy of > 99% over
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the MNIST dataset. Second, by designing communication-efficient protocols for non-
linear functions, we obtain several orders of magnitude improvements over prior works.
Finally, our protocols provide both full semi-honest security as well as privacy against
malicious adversaries, unlike prior works that only provided semi-honest security.
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Chapter 4

Falcon: Scaling-up
Privacy-Preserving Machine
Learning

This chapter focuses on training and inference of NNs in a manner that protects the
privacy of sensitive data1. We propose Falcon – an end-to-end 3-party protocol for
fast and secure computation of deep learning algorithms on large networks. Falcon
presents three main advantages:

(A) Malicious Security: Falcon provides strong security guarantees in an honest-
majority adversarial setting. This assumption is similar to prior work where
majority of the parties (e.g., 2 out of three) behave honestly [84, 50]. Falcon
proposes new protocols that are secure against such corruptions and ensure
that either the computation always correctly completes or aborts detecting ma-
licious activity. We achieve this by designing new protocols for the computation
of non-linear functions (like ReLU). While MPC protocols are very efficient at
computing linear functions, computing non-linear functions like ReLU is much
more challenging. We propose solutions both for the malicious security model
and provide even more efficient protocols where semi-honest security is suffi-
cient. We formally prove the security of Falcon using the standard simulation
paradigm (see Section C.1). We implement both the semi-honest and mali-
cious protocols in our end-to-end framework. In this manner, Falcon provides
a choice to the developers to select between either of the security guarantees
depending on the trust assumption among the parties and performance require-
ments (improved performance for semi-honest protocols).

(B) Improved Protocols: Falcon combines techniques from SecureNN [109] and
ABY3 [84] that result in improved protocol efficiency. We improve the theoret-
ical complexity of the central building block – derivative of ReLU – by a factor
of 2× through simplified algebra for fixed-point arithmetic. We demonstrate

1For additional experiments and details, refer to the full version found at https://snwagh.
github.io.
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our protocols in a smaller ring size, which is possible using an exact yet expen-
sive truncation algorithm. However, this enables the entire framework to use a
smaller datatype, thus reducing their communication complexity by at least 2×.
This reduced communication is critical to the communication improvements of
Falcon over prior work. Furthermore, as can be seen in Section 4.4, these
theoretical improvements lead to even larger practical improvements due to the
recursive dependence of the complex functionalities on the improved building
blocks. Overall, we demonstrate how to achieve maliciously secure protocols
for non-linear operations entirely using arithmetic secret sharing and avoiding
the use of inter-conversion protocols (between arithmetic, Boolean, and garbled
circuits).

(C) Expressiveness: The focus of this work is to provide simple yet efficient proto-
cols for the fundamental functionalities commonly used in state-of-the-art NNs.
Batch normalization, has been previously considered in privacy-preserving in-
ference as linear transformation using HE [24, 61, 32]. However, batch nor-
malization is critical for stable convergence of networks as well as to reduce
the parameter tuning required during training of neural networks. Falcon
is the first work to demonstrate full support for Batch-Normalization layers,
both for forward and backward pass, in private machine learning. This ex-
tensive support makes Falcon expressive, thereby supporting evaluation of
large networks with hundreds of millions parameters such as VGG16 [102] and
AlexNet [69] over datasets such as MNIST [83], CIFAR-10 [68] as well as Tiny
ImageNet [114] including in both the LAN and WAN network settings. Design-
ing secure protocols for training is more difficult due to the operations involved
in back-propagation which are not required for inference. A number of prior
works assume training in a trusted environment and hence provide support for
only inference service [94, 77, 95, 25, 64]. However, sensitive data is often in-
accessible even during training as described in our motivating application in
Section 1.4.

Compared to prior art for private inference, Falcon is about 8× faster than
SecureNN (PETS ’19) on average and comparable to ABY3 (CCS ’18); Falcon
is about 16×-200× more communication-efficient than either of these. For private
training, Falcon is about 6× faster than SecureNN, 4.4× faster than ABY3 and
about 2×-60× more communication-efficient. This is also the first work to show via
experiments in the WAN setting that for multi-party machine learning computations
over large networks and datasets, compute operations dominate the overall latency,
as opposed to the communication.

4.1 Falcon Overview
In this section, we describe a general application setting for Falcon and provide an
executive summary of the technical contributions. We consider the following scenario:
There are two types of users, the first own data on which the learning algorithm will
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be applied, we call them data holders. The second are users who query the system
after the learning period, we call these query users. These two sets of users need not be
disjoint. We design a machine learning service. This service is provided by 3 parties
which we call computing servers. We assume that government regulations or other
social deterrents are sufficient enforcers for non-collusion between these computing
servers. The service works in two phases: the training phase where the machine
learning model of interest is trained on the data of the data holders and the inference
phase where the trained model can be queried by the query users. The data holders
share their data in a replicated secret sharing form [6] between the 3 computing
servers. These 3 servers utilize the shared data and privately train the network. After
this stage, query users can submit queries to the system and receive answers based
on the newly constructed model held in shared form by the three servers. This way,
the data holders’ input has complete privacy from each of the 3 servers. Moreover,
the query is also submitted in shared form and thus is kept secret from the 3 servers.
Refer to Section 1.4 for concrete use cases.

4.1.1 Threat Model, Assumptions, & Scope
Our threat model assumes an honest majority among the three parties in the setting
described above. This is similar to the SecureNN adversarial model – however,
this work also provides correctness in the presence of malicious adversaries. This is
a common adversarial setting considered in previous secure multi-party computation
approaches [84, 85, 6, 50]. Each of the 3 parties has shared point-to-point communi-
cation channels and pairwise shared seeds to use AES as a pseudo-random number
generator (PRNG) to generate cryptographically secure common randomness. We
note that as the users receive the answers to the queries in the clear, Falcon does
not guarantee protecting the privacy of the training data from attacks such as model
inversion, membership inference, and attribute inference [101, 49, 107]. Defending
against these attacks is an orthogonal problem and hence we consider it out-of-scope
for this work. We assume that users provide consistent shares and that model poi-
soning attacks are out of scope.

4.1.2 Technical Contributions
In this section, we summarize some of the main contributions of this work with a
focus on techniques used to achieve our results and improvements.

Hybrid Integration for Malicious Security. Falcon consists of a hybrid inte-
gration of ideas from SecureNN and ABY3 along with newer protocol constructions
for privacy-preserving deep learning. SecureNN, the closest related prior work, does
not provide correctness in the presence of malicious adversaries. Furthermore, the
use of semi-honest parties in SecureNN makes it a significant challenge to convert
those protocols to provide security against malicious corruptions. To this end, we
use replicated secret sharing as our building block and use the redundancy to enforce
correct behavior in our protocols [6, 50, 84]. Note that changing from the 2-out-of-2
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secret sharing scheme in SecureNN to a 2-out-of-3 replicated secret sharing funda-
mentally alters some of the building blocks – these protocols are a new contribution
of this work. We work in the three-party setting where at most one party can be
corrupt. We prove each building block secure in the Universal Composability (UC)
framework by proving our protocols are (1) perfectly secure in the stand-alone model,
i.e., the distributions are identical and not just statistically close in a model where
the protocol is executed only once; and (2) have straight-line black-box simulators,
i.e., only assume oracle access to the adversary and do no rewind. Theorem 1.2 from
Kushilevitz et al. [72] then implies security under general concurrent composition.

Theoretical Improvements to Protocols. Falcon proposes more efficient pro-
tocols for common machine learning functionalities while providing stronger security
guarantees. We achieve this through a number of theoretical improvements for reduc-
ing both the computation as well as the communication. First, in Falcon all parties
execute the same protocol in contrast to SecureNN where the protocol is asymmetric.
The uniformity of the parties leads to more optimal resource utilization. Second,
the protocol for derivative of ReLU2 in SecureNN [109] first transforms the inputs
using a Share Convert subroutine (into secret shares modulo an odd ring) and then
invokes a Compute MSB subroutine to compute the most significant bit (MSB) which
is closely related to the DReLU function. Each of these subroutines has roughly the
same overhead. In Falcon, we show an easier technique using new mathematical
insights to compute DReLU which reduces the overhead by over 2×. Note that ReLU
and DReLU, non-linear activation functions central to deep learning, are typically the
expensive operations in MPC. The first two points above lead to strictly improved
protocol for these. Third, Falcon uses a smaller ring size while using an exact yet
expensive truncation protocol. This trade-off however allows the entire framework to
operate on smaller data-types, thus reducing the communication complexity at least
2×. Furthermore, this communication improvement is amplified with the super-linear
dependence of the overall communication on the ring size (cf Table 4.2). This reduced
communication is critical to the communication improvements of Falcon over prior
work. In other words, we notice strictly larger performance improvements (than the
theoretical improvements) in our end-to-end deployments of benchmarked networks
presented in Section 4.4.

Improved Scope of ML Algorithms. Prior works focus on implementing proto-
cols for linear layers and important non-linear operations. We propose and implement
an end-to-end protocol for batch normalization (both forward and backward pass).
Batch-normalization is widely used in practice for speedy training of NNs and is crit-
ical for machine learning for two reasons. First, it speeds up training by allowing

2Note that DReLU, when using fixed-point encoding over a ring ZL is defined as follows:

DReLU(x) =

{
0 if x > L/2

1 Otherwise
(4.1)
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higher learning rates and prevents extreme values of activations [62]. This is an im-
portant component of the parameter tuning for NNs as there is limited “seeing and
learning” during private training. Second, it reduces over-fitting by providing a slight
regularization effect and thus improves the stability of training [62]. In other words,
private training of NNs without batch normalization is generally difficult and requires
significant pre-training. To truly enable private deep learning, efficient protocols for
batch normalization are required. Implementing batch normalization in MPC is hard
for two reasons. First computing the inverse of a number is generally difficult in MPC.
Second, most approximate approaches require the inputs to be within a certain range,
i.e., there is a trade-off between having an approximate function for inverse of a num-
ber over a large range and the complexity of implementing it in MPC. Through our
implementation, we enable batch normalization that can allow the training of complex
network architectures such as AlexNet (about 60 Million parameters).

Comprehensive Evaluation. As shown in Table 4.1, there are a number of factors
involved in comparing different MPC protocols and that none of the prior works
provide a holistic solution. We also thoroughly benchmark our proposed system –
we evaluate our approach over 6 different network architectures and over 3 standard
datasets (MNIST, CIFAR-10, and Tiny ImageNet). We also benchmark our system in
both the LAN and WAN settings, for training as well as for inference, and in both the
semi-honest and actively secure adversarial models. Finally, we provide a thorough
performance comparison against prior state-of-the-art works in the space of privacy-
preserving machine learning (including 2PC). We believe that such a comparison,
across a spectrum of deployment scenarios, is useful for the broader community of
MPC practitioners.

Finally, we note that the insights and techniques developed in this work are
broadly applicable. For instance, ReLU is essentially a comparison function which
can thus enable a number of other applications – private computation of decision
trees, privacy-preserving searching and thresholding, and private sorting.

4.2 Protocol Constructions
We begin by describing the notation used in this chapter. We then describe how
basic operations are performed over the secret sharing scheme and then move on to
describe our protocols in detail.

4.2.1 Notation
Let P1, P2, P3 be the parties. We use Pi+1, Pi−1 to denote the next and previous party
for Pi (with periodic boundary conditions). In other words, next party for P3 is P1

and previous party for P1 is P3. We use JxKm to denote 2-out-of-3 replicated secret
sharing (RSS) modulo m for a general modulus m. For any x let JxKm = (x1, x2, x3)
denote the RSS of a secret x modulo m, i.e., x ≡ x1 + x2 + x3 (mod m), but they
are otherwise random. We use the notation JxKm to mean (x1, x2) is held by P1,
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Table 4.1: Comparison of various private deep learning frameworks. Falcon proposes efficient
protocols for non-linear functionalities such as ReLU and batch normalization (1) purely using
modular arithmetic (2) under malicious corruptions (3) supporting both private training and

inference. Falcon also provides a comprehensive evaluation (1) over larger networks and datasets
(2) extensively compares with related work (3) provides newer insights for future directions of

PPML.  indicates the framework supports a feature, # indicates not supported feature, and G#
refers to fair comparison difficult due to the following reasons: SecureNN provides malicious
privacy but not correctness and supports division but not batch norm, XONN supports a

simplified batch norm specific to a binary activation layer, ABY3 does not present WAN results for
neural networks, Chameleon evaluates over a network similar to AlexNet but using the simpler
mean-pooling operations, and due to the high round complexity and communication, SecureML
provides an estimate of their WAN evaluation, Delphi evaluates over network such as ResNet-32,
CryptFlow evaluates networks such as DenseNet-121, ResNet-50, uses weaker network parameters
in LAN and uses ImageNet dataset. QuantizedNN uses inherent quantization of the underlying
NN and performs extensive evaluation over MobileNet architectures and * refers to 3PC version
among the 8 protocols. BLAZE uses a Parkinson disease dataset, similar in dimension to MNIST.
FLASH and Trident use few other smaller datasets in their evaluation as well as evaluate over

increasing number of layers over the network architecture from [85].
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Framework Private Threat Supported Techniques LAN/ Evaluation Network
Capability Model Layers Used WAN Dataset Architectures

Theoretical Metrics Evaluation Metrics

2PC

MiniONN [77]  #  #     #     #   #  #  # # #
Chameleon [95]  #  #     # #       #    # G# #

EzPC [25]  #  #     # #       #  #  # # #
Gazelle [64]  #  #     #     #   #    # # #

SecureML [85]    #     #     G#  # #  # # # # #
XONN [94]  #       G# #    #   #    # # G#
Delphi [82]  #  #     #     # #  # # #  # # G#

3PC

ABY3 [84]         # #    G#  # #    # # #
SecureNN [109]    G#     G# # #     # #    # # #
CryptFlow [71]  #       # # #  G# #        # G#

QuantizedNN [35]*  #       G# G# #    # #  # # # # # G#
ASTRA [27]    G#     # #      # #  # # # # #
BLAZE [88]         # #     G# # #  # # # # #

Falcon (This Work)          # #      G#       
4PC FLASH [19]         # # #     G# #  G# # # # #

Trident [91]         # #      # #  # # # # #

(x2, x3) by P2, and (x3, x1) by P3. We denote by x[i] the ith component of a vector x.
In this work, we focus on three different moduli L = 2ℓ, a small prime p, and 2. In
particular, we use ℓ = 5, p = 37. We use fixed-point encoding with 13 bits of precision.
In ΠMult over Zp, the multiplications are performed using the same procedure with no
truncation. ReLU, which compares a value with 0, in this fixed-point representation,
corresponds to a comparison with 2ℓ−1.

4.2.2 Basic Operations
To ease the exposition of the protocols, we first describe how basic operations can be
performed over the above secret sharing scheme. These operations are extensions of
Boolean computations from Araki et al. [6] to arithmetic shares, similar to ABY3 [84].
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However, ABY3 relies on efficient garbled circuits for non-linear function computation
which is fundamentally different than the philosophy of this work which relies on
simple modular arithmetic. In this manner, we propose a hybrid integration of ideas
from SecureNN and ABY3.

Correlated Randomness: Throughout this work, we will need two basic ran-
dom number generators. Both of these can be efficiently implemented (using local
computation) using PRFs. We describe them below:

(A) 3-out-of-3 randomness: Random α1, α2, α3 such that α1 + α2 + α3 ≡ 0
(mod L) and party Pi holds αi

(B) 2-out-of-3 randomness: Random α1, α2, α3 such that α1 + α2 + α3 ≡ 0
(mod L) and party Pi holds (αi, αi+1).

Given pairwise shared random keys ki (shared between parties Pi and Pi+1),
the above two can be computed as αi = Fki(cnt) − Fki−1

(cnt) and (αi, αi−1) =
(Fki(cnt), Fki−1

(cnt)) where cnt is a counter incremented after each invocation. This
is more formally described later on in ΠPrep in Figure 4.1.

Linear operations: Let a, b, c be public constants and JxKm and JyKm be secret
shared. Then Jax+by+cKm can be locally computed as (ax1+by1+c, ax2+by2, ax3+
by3) and hence are simply local computations.

Multiplications ΠMult: To multiply two shared values together JxKm =
(x1, x2, x3) and JyKm = (y1, y2, y3), parties locally compute z1 = x1y1+x2y1+x1y2, z2 =
x2y2 + x3y2 + x2y3, and z3 = x3y3 + x1y3 + x3y1. At the end of this, z1, z2, and z3
form a 3-out-of-3 secret sharing of Jz = x ·yKm. Parties then perform resharing where
3-out-of-3 randomness is used to generate 2-out-of-3 sharing by sending αi + zi to
party i− 1.

Convolutions and Matrix Multiplications: We rely on prior work to per-
form convolutions and matrix multiplications over secret shares. To perform matrix
multiplications, we note that ΠMult described above extends to incorporate matrix
multiplications. To perform convolutions, we simply expand the convolutions into
matrix multiplications of larger dimensions (cf Section 5.1 of [109]) and invoke the
protocol for matrix multiplications. Note that with fixed-point arithmetic, each mul-
tiplication protocol has to be followed by the truncation protocol (cf Figure 4.1) to
ensure correct fixed-point precision. For more details on fixed-point multiplication,
semi-honest, and malicious variants of this refer to [84, 6].

Reconstruction of JxKm: In the semi-honest setting, each party sends one ring
element to the next party, i.e., Pi sends share xi to Pi+1. In the malicious setting,
each party sends xi to Pi+1 and xi+1 to Pi−1 and aborts if the two received values do
not agree. Note that in either case, a single round of communication is required.

Select Shares ΠSS: We define a sub-routine ΠSS, which will be used a number
of times in the descriptions of other functionalities. It takes as input shares of two
random values JxKL, JyKL, and shares of a random bit JbK2. The output JzKL is eitherJxKL or JyKL depending on whether b = 0 or b = 1. To do this, we assume access
to shares of a random bit JcK2 and JcKL (pre-computation). Then we open the bit
(b ⊕ c) = e. If e = 1, we set JdKL = J1 − cKL otherwise set JdKL = JcKL. Finally, we
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compute JzKL = J(y−x) ·dKL+ JxKL where J(y−x) ·dKL can be computed using ΠMult
(y − x, d).

XOR with public bit b: Given shares of a bit JxKm and a public bit b, we can
locally compute shares of bit JyKm = Jx⊕ bKm by noting that y = x+ b− 2b ·x. Since
b is public, this is a linear operation and can be computed in both the semi-honest
and malicious adversary models.

Evaluating J(−1)β · xKm from JxKm and JβKm: We assume that β ∈ {0, 1}. We
first compute 1−2β and then perform the multiplication protocol described above to
obtain J(1− 2β)xKm = J(−1)β · xKm. We split our computations into data-dependent
online computations and data-independent offline computations. Protocols for offline
computations are in Figure 4.1.

4.2.3 Private Compare
This function evaluates the bit x ≥ r where r is public and the parties hold shares
of bits of x in Zp. Algorithm 11 describes this protocol. Note that β is necessary
for privacy as β′ reveals information about the output (x ≥ r) if not blinded by a
random bit β. Each of the bits are independent so a single blinding bit β is sufficient
to hide computation of (x ≥ r) or (r > x).

(A) Step 2: u[i] can be computed by first evaluating shares of 2β − 1 and then
computing the product of (2β − 1) and x[i]− r[i]. This can be done in a single
round using one invocation of ΠMult.

(B) Steps 3,4: These are simply local computations. For instance, Jw[i]K =
(w[i]1, w[i]2, w[i]3) can be computed as w[i]j = x[i]j + δj1r[i] − 2r[i]x[i]j where
j ∈ {1, 2, 3} and δij is the Kronecker delta function and is defined as

δij =

{
0 if i 6= j

1 if i = j

(C) Step 6 can be computed in log2 ℓ+13 rounds using sequential invocations of the
ΠMult with smaller strings.

(D) Steps 7,8: These are once again local computations.

This protocol is an example of the challenges of integrating approaches based on
simple modular arithmetic with malicious security. Both SecureNN and Falcon aim
to find if there exists an index i such that c[i] = 0. However, the existence of a semi-
honest third party makes checking this much easier in SecureNN. The two primary
parties simply blind and mask their inputs and send them to the third party. This
is not possible in Falcon due to the stronger adversarial model and requires newer
protocol constructions. In particular, we need to multiply all the c[i]’s together along
with a mask in Z∗

p and reveal this final product to compute the answer.
3One additional round because of multiplication by random blinding factor.
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ΠPrep

Usage: Used to generate pre-processing material required for the online protocols.

Setup: This step will have to be executed only once.

(A) Each party Pi chooses a random seed ki
(B) Send this random seed to party Pi+1

Common randomness: Let F be any seeded PRNG. Then 3-out-of-3 and 2-out-of-3
common randomness described in Section 4.2.2 can be generated as follows:

(A) αi = Fki(cnt)− Fki−1
(cnt) and cnt++

(B) (αi, αi−1) = (Fki(cnt), Fki−1
(cnt)) and cnt++

Truncation Pair: Generate truncation pair JrK, Jr′K = Jr/2dK.
(A) Run protocol Πtrunc2 from [84] (Figure 3 in [84])

Correlated randomness for Private Compare: Correlated randomness for ΠPC

(A) Sample random bit JbK2
(B) Use bit injection from [84] JbK2 → JbKp
(C) Sample random values m1, . . .mk ∈ Zp.
(D) Compute and open mp−1

1 , . . . ,mp−1
k .

(E) Remove openings that equal 0 and queue openings that equal 1. Note that
this computation takes dlog2 pe rounds and can be amortized for efficiency
(by setting a large value of k).

Correlated randomness for Wrap3: Correlated randomness required for ΠWA

(A) Sample random bits JriK2 for i ∈ [ℓ]

(B) Perform bit composition from [84] to get JriKL
(C) Use bit injection from [84] JriK2 → JriKp
(D) Use the optimized full adder FA to compute the final carry bit. Note that

this bit is precisely wrap3(·)

Correlated randomness for ReLU: Correlated randomness required for ΠReLU

(A) Sample random bit JbK2
(B) Use bit injection from [84] JbK2 → JbKL

Correlated randomness for Maxpool and Division: No additional correlated
randomness necessary other than that used in their subroutines.

Figure 4.1: Protocols for generating various pre-processing material
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Algorithm 11 Private Compare ΠPC(P1, P2, P3):
Input: P1, P2, P3 hold replicated secret sharing of bits of x in Zp.
Output: All parties get shares of the bit (x ≥ r) ∈ Z2.
Common Randomness: P1, P2, P3 hold a public ℓ bit integer r, shares of a random

bit in two rings JβK2 and JβKp and shares of a random, secret integer m ∈ Z∗
p.

1: for i = {ℓ− 1, ℓ− 2, . . . , 0} do
2: Compute shares of u[i] = (−1)β(x[i]− r[i])
3: Compute shares of w[i] = x[i]⊕ r[i]
4: Compute shares of c[i] = u[i] + 1 +

∑ℓ
k=i+1w[k]

5: end for
6: Compute and reveal d given by d := JmKp ·∏ℓ−1

i=0 c[i] (mod p)
7: Set β′ = 1 if (d 6= 0) and 0 otherwise.
8: return Shares of β′ ⊕ β ∈ Z2

4.2.4 Wrap Function
Central to the computation of operations such as ReLU and DReLU is a comparison
function. The wrap functions, wrap2 and wrap3 are defined below as a function of the
secret shares of the parties and effectively compute the “carry bit” when the shares
are added together as integers. Eq. 4.11 shows that DReLU can be easily computed
using the wrap3 function. So all we require is a secure protocol for wrap3. Note that
we define two similar functions called “wrap” (denoted by wrap2 and wrap3). One
function takes three inputs and the other one takes four inputs and are formally
defined as follows:

wrap2(a1, a2, L) =

{
0 if a1 + a2 < L

1 Otherwise
(4.2)

wrap3e(a1, a2, a3, L) =


0 if a1 + a2 + a3 < L

1 if L ≤ a1 + a2 + a3 < 2L

2 if 2L ≤ a1 + a2 + a3 < 3L

(4.3)

In the rest of the chapter, we use the (mod 2) reduction of the wrap function in
Eq. 4.4. We call Eq. 4.3 the exact wrap function and Eq. 4.4 as simply the wrap
function.

wrap3(a1, a2, a3, L) = wrap3e(a1, a2, a3, L) (mod 2) (4.4)
Next we briefly describe the connection between wrap3 computed on shares

a1, a2, a3 and the most significant bit (MSB) of the underlying secret a. Note
that a = a1 + a2 + a3 (mod L) as ai’s are shares of a modulo L. Considering
this sum as a logic circuit (for instance as a ripple carry adder), we can see that
MSB(a) = MSB(a1)+MSB(a2)+MSB(a3)+ c (mod 2) where c is the carry bit from
the previous index. The key insight here is that the carry c from the previous index is
simply the wrap3 function computed on ai’s (ignoring their MSB’s) modulo L/2 (this
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Algorithm 12 wrap3 ΠWA(P1, P2, P3):
Input: P1, P2, P3 hold shares of a in ZL.
Output: P1, P2, P3 get shares of a bit θ = wrap3(a1, a2, a3, L)
Common Randomness: P1, P2, P3 hold shares JxKL (of a random number x), Jx[i]Kp

(shares of bits of x) and JαK2 where α = wrap3(x1, x2, x3, L).
1: Compute rj ≡ aj + xj (mod L) and βj = wrap2(aj, xj, L)
2: Reconstruct r ≡

∑
rj (mod L)

3: Compute δ = wrap3(r1, r2, r3, L) ▷ In the clear
4: Run ΠPC on x, r + 1 to get η = (x ≥ r + 1) ▷ i.e., η = (x > r)
5: return θ = β1 + β2 + β3 + δ − η − α

is evident from Eq. 4.3). And this last operation is synonymous with computing the
wrap3 function on 2ai’s modulo L. We will further describe the consequences of this
connection in Section 4.2.5 where we describe a protocol to compute the ReLU and
DReLU functions. Algorithm 12 gives the protocol for securely computing the wrap3

function. Note that wrap2 function is always computed locally and hence a secure
algorithm is not needed for the same. Furthermore, note that the wrap2 function
allows us to write exact integer equations as follows: if a ≡ a1 + a2 (mod L) then
a = a1 + a2 − wrap2(a1, a2, L) · L where the former relation is a congruence relation
but the latter is an integer relation (and has exact equality). Finally, to see the
correctness of the wrap3 protocol, in reference to Algorithm 12, we can write the
following set of equations

r = a+ x− η · L (4.5)
r = r1 + r2 + r3 − δe · L (4.6)
ri = ai + xi − βi · L ∀i ∈ {1, 2, 3} (4.7)
x = x1 + x2 + x3 − αe · L (4.8)

where δe, αe denote the exact wrap functions, Eq. 4.6,4.8 follow from the definition of
the exact wrap function, while Eq 4.7 follows from the definition of wrap2 function.
To see Eq. 4.5, note that r, a, x ∈ [0, L − 1] and that r ≡ a + x (mod L). Hence
a+ x ≥ L iff r < x (or x ≥ r+1). Finally, assuming θe is the exact wrap function on
a1, a2, a3, i.e.,

a = a1 + a2 + a3 − θe · L (4.9)

Eqs. 4.5-4.9 together give a constraint among the Greek symbols (in other words,
(4.5) - (4.6) - (4.7) + (4.8) + (4.9) gives Eq. 4.10 below)

θe = β1 + β2 + β3 + δe − η − αe (4.10)

Reducing Eq. 4.10 modulo 2 gives us θ = β1 + β2 + β3 + δ − η − α which is used to
compute wrap3 as in Algorithm 12.
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Algorithm 13 ReLU, ΠReLU(P1, P2, P3):
Input: P1, P2, P3 hold shares of a in ZL.
Output: P1, P2, P3 get shares of ReLU(a).
Common Randomness: JcK2 and JcKL (shares of a random bit in two rings)
1: Run ΠWA to get wrap3(2a1, 2a2, 2a3, L)
2: Compute JbK2 where b = DReLU(a) ▷ Local comp. (Eq. 4.11)
3: return Output of ΠSS run on {a, 0} with b as selection.

4.2.5 ReLU and Derivative of ReLU
We now describe how to construct a protocol for securely computing ReLU(a) and
DReLU(a) for a given secret a. Recall that we use fixed-point arithmetic over Z2ℓ

for efficiency reasons. Using the natural encoding of native C++ data-types, we know
that positive numbers are the first 2ℓ−1 and have their most significant bit equal to
0. Negative numbers, on the other hand are the last 2ℓ−1 numbers in the ℓ-bit range
and have their most significant bit equal to 1. Thus, the DReLU function defined
by Eq. 4.1, has a simple connection with the MSB of the fixed-point representation
viz., DReLU(a) = 1 − MSB(a). Furthermore, in Section 4.2.4, we have seen the
connection between MSB(a) and wrap3. Together, these insights can be distilled into
the following equation:

DReLU(a) = MSB(a1)⊕MSB(a2)⊕MSB(a3)
⊕ wrap3(2a1, 2a2, 2a3, L)⊕ 1

(4.11)

In particular, the derivative of ReLU can be computed by combining the output of the
wrap function with local computations. Finally, for computing ReLU from DReLU,
we simply call ΠSS (which effectively performs ΠMult on shares of a and shares of
DReLU(a)). With these observations, we can implement the ReLU and Derivative
of ReLU protocols (see Algorithm 13). Note that the approach here is crucially
different from the approach SecureNN uses due to use of fundamentally different
building blocks as well as deeper mathematical insights such as Eq. 4.11. To achieve
the DReLU functionality, SecureNN first uses a subroutine to transform the shares of
the secret into an odd modulus ring and then uses another subroutine to compute the
MSB (cf Section 4.1.2). Both these subroutines have similar complexities. Falcon
on the other hand uses the insight presented in Eq. 4.11 to completely eliminate the
need for these subroutines, improving the efficiency by about 2× and simplifying
the overall protocol. This also drastically improves the end-to-end performance (by
over 6.4×) as the ReLU and DReLU functionalities are the building blocks of every
comparison in the network.

4.2.6 Maxpool and Derivative of Maxpool
The functionality of maxpool simply takes as input a vector of secret shared values and
outputs the maximum value. For derivative of maxpool, we need a one-hot vector of
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the same size as the input where the 1 is at the location of the index of the maximum
value. Maxpool can be implemented using a binary sort on the vector of inputs
and small amounts of bookkeeping, where the comparisons can be performed using
ReLUs. Derivative of maxpool can be efficiently implemented along with maxpool.
Algorithm 14 describes these in detail.

Algorithm 14 Maxpool, ΠMaxpool(P1, P2, P3):
Input: P1, P2, P3 hold shares of a1, a2, . . . , an in ZL.
Output: P1, P2, P3 get shares of ak and ek where k = argmax{a1, a2, . . . , an} and

where ek = {e1, e2, . . . , en} with ei = 0 ∀i 6= k and ek = 1.
Common Randomness: No additional common randomness required.
1: Set max← a1 and ind← e1 = {1, 0, . . . , 0}
2: for i = {2, 3, . . . , n} do
3: Set dmax ← (max− ai) and dind ← (ind − ei)
4: b← ΠDReLU(dmax) ▷ b → Derivative of ReLU
5: Set max as ΠSS output on inputs {ai,max} using selection b.
6: Set ind as ΠSS output on inputs {ei, ind} using selection b.
7: end for
8: return max, ind

4.2.7 Division and Batch Normalization
Truncation allows parties to securely eliminate lower bits of a secret shared value (i.e.,
truncation by k bits of a secret a → a/2k). However, the problem of dividing by a
secret shared number is considerably harder and efficient algorithms rely on either (1)
sequential comparison or (2) numerical methods. In this work, we use the numerical
methods approach for its efficiency. We use the specific choices of initializations given
in [22, 1] to efficiently compute division over secret shares. A crucial component of
numerical methods is the need to estimate the value of the secret within a range.
We achieve this using Algorithm 15. Note that Algorithm 15 outputs the bounding
power of 2, which is also what is guaranteed by the functionality. In this way, we
only reveal the bounding power of 2 and nothing else.

Algorithm 16 is used to compute the value of a/b where a, b are secret shared.
The first step for the algorithm is to transform b → x where x ∈ [0.5, 1). Note that
even though b is a fixed-point precision of fp, for the computations in Algorithm 16, x
has to be interpreted as a value with fixed-point precision α+1 where 2α ≤ b < 2α+1.
Thus we first need to extract α (the appropriate range) using Algorithm 15. Let
w0 = 2.9142− 2x, ϵ0 = 1− x · w0 (cf. [22, 1] for choice of constants). Then an initial
approximation for 1/x is w0 · (1 + ϵ0). For higher-order approximations, set ϵi = ϵ2i−1

and multiply the previous approximate result by (1+ ϵi) to get a better approximate
result. Each successive iteration increases the round complexity by 2. For our value
of fixed-point precision, we use the following approximation which works with high
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Algorithm 15 Bounding Power, ΠPow(P1, P2, P3):
Input: P1, P2, P3 hold shares of b in ZL.
Output: P1, P2, P3 get α in the clear, where 2α ≤ b < 2α+1.
Common Randomness: No additional common randomness required.
1: Initialize α← 0
2: for i = {ℓ− 1, . . . , 1, 0} do
3: c← ΠDReLU(x− 22i+α) and reconstruct c
4: Set α← α + 2i if c = 1
5: end for
6: return α

accuracy (refer to Section 4.4 for details):

AppDiv(x) = w0 · (1 + ϵ0)(1 + ϵ1) ≈
1

x
(4.12)

Batch-norm is another important component of neural network architectures. They

Algorithm 16 Division, ΠDiv(P1, P2, P3):
Input: P1, P2, P3 hold shares of a, b in ZL.
Output: P1, P2, P3 get shares of a/b in ZL computed as integer division with a given

fixed precision fp.
Common Randomness: No additional common randomness required.
1: Run ΠPow on b to get α such that 2α ≤ b < 2α+1

2: Compute w0 ← 2.9142− 2b
3: Compute ϵ0 ← 1− b · w0 and ϵ1 ← ϵ20
4: return aw0(1 + ϵ0)(1 + ϵ1)

improve the convergence as well as help automate the training process. Algorithm 17
describes the protocol to compute batch-norm. For step 3, required by Eq. B.4c in
Appendix, we use Newton’s method. We use 2−⌊α/2⌉ as an initial approximation of
1/
√
σ2 + ϵ, where 2α ≤ σ2 + ϵ < 2α+1 and use the successive iterative formula:

xn+1 =
xn
2

(
3− ax2n

)
(4.13)

Given the strategic choice of initial guess, the number of rounds required for close ap-
proximation for our choice of fixed-point precision is 4. However, batch normalization
during training is computed by sequentially computing

√
σ2 + ϵ and then computing

the inverse. This approach is used to optimize the computation required during back-
propagation which requires the values of

√
σ2 + ϵ. For computing the square root of

a value a, we use Newton’s method given by Eq. 4.14. This can then be used in con-
junction with the inverse computation given by Eq. 4.12 to complete the batch-norm
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Algorithm 17 Batch Norm, ΠBN(P1, P2, P3):
Input: P1, P2, P3 hold shares of a1, a2 . . . am in ZL where m is the size of each batch

and shares of two learnable parameters γ, β.
Output: P1, P2, P3 get shares of γzi + β for i ∈ [m] and zi = (ai − µ)/(

√
σ2 + ϵ)

where µ = 1/m
∑
ai, σ2 = 1/m

∑
(ai − µ)2, and ϵ is a set constant.

Common Randomness: No additional common randomness required.
1: Set µ← 1/m ·

∑
ai

2: Compute σ2 ← 1/m ·
∑

(ai − µ)2 and let b = σ2 + ϵ
3: Run ΠPow on b to find α such that 2α ≤ b < 2α+1

4: Set x0 ← 2−⌊α/2⌉

5: for i ∈ 0, . . . , 3 do
6: Set xi+1 ← xi

2
(3− bx2i )

7: end for
8: return γ · xrnds · (ai − µ) + β for i ∈ [m]

computations.
xn+1 =

1

2

(
xn +

a

xn

)
(4.14)

4.3 Theoretical Analysis
We provide a detailed theoretical analysis of our framework and protocols. In partic-
ular, we provide proofs of security and analyze the theoretical complexity.

4.3.1 Security Proofs
We model and prove the security of our construction in the real-world/ideal-world
simulation paradigm [54, 21, 20]. In the real interaction, the parties execute the
protocol in the presence of an adversary and the environment. On the other hand, in
the ideal interaction, the parties send their inputs to a trusted party that computes
the functionality truthfully. Finally, to prove the security of our protocols, for every
adversary in the real interaction, there exists a simulator in the ideal interaction such
that the environment cannot distinguish between the two scenarios. In other words,
whatever information the adversary extracts in the real interaction, the simulator can
extract it in the ideal world as well.

We show that our protocols are perfectly secure (i.e., the joint distributions of
the inputs, outputs, and the communication transcripts are exactly the same and not
statistically close) in the stand-alone model (i.e., protocol is executed only once), and
that they have a straight-line black-box simulators (i.e., only assume oracle access to
the adversary and hence do no rewind)4. We then rely on the result of Kushilevitz et

4For more details on these, refer to [72]
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FPC

Input: The functionality receives inputs {JxiKp}ℓi=1, r

Output: Compute the following

(A) Reconstruct bits xi and x =
∑

xi · 2i

(B) Compute b = (x ≥ r)

(C) Generate random shares of b and send back to the parties

Figure 4.2: Ideal functionality for ΠPC

FWA

Input: The functionality receives inputs JaKL.
Output: Compute the following

(A) Compute b = wrap3(a1, a2, a3, L)

(B) Generate random shares of b and send back to the parties

Figure 4.3: Ideal functionality for ΠWA

al. [72] to prove that our protocols are secure under concurrent general composition
(Theorem 1.2 in [72]).

We formally describe the functionalities in Appendix B. We describe simulators
for ΠPC (Figure 4.2), ΠWA (Figure 4.3), ΠReLU (Figure 4.4), ΠMaxpool (Figure 4.5), ΠPow
(Figure 4.6), ΠDiv (Figure 4.7), and ΠBN (Figure 4.8) that achieve indistinguishability.
FMult,FTrunc,FReconst are identical to prior works [84, 50]. We prove security using
the standard indistinguishability argument. To prove the security of a particular
functionality, we set up hybrid interactions where the sub-protocols used in that
protocol are replaced by their corresponding ideal functionalities and then prove that
the interactions can be simulated. This hybrid argument in effect sets up a series of
interactions I0, I1, . . . , Ik for some k where I0 corresponds to the real interaction and
Ik corresponds to the ideal interaction. Each neighboring interaction, i.e., Ii, Ii+1 for
i ∈ {0, . . . , k − 1} is then shown indistinguishable from each other, in effect showing
that the real and ideal interactions are indistinguishable. Without loss of generality,
we assume that party P2 is corrupt. In the real world, the adversary Adv interacts
with the honest parties P0 and P1. In the ideal world, the simulator interacts with
the adversary and simulates exact transcripts for interactions between the adversary
Adv and P0, P1. On the other hand, the simulator should be able to extract the
adversaries inputs. These inputs are fed to the functionality to generate correct
output distributions. Theorems 4.1-4.6 pertain to the indistinguishability of these
two interactions.

Theorem 4.1. ΠPC securely realizes FPC with abort, in the presence of one malicious
party in the (FMult,FReconst,FPrep)-hybrid model.
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FReLU

Input: The functionality receives inputs JaKL.
Output: Compute the following

(A) Compute b = ReLU(a1 + a2 + a3 (mod L)) ▷ Refer to Eq. 4.1
(B) Generate random shares of b and send back to the parties

Figure 4.4: Ideal functionality for ΠReLU

FMaxpool

Input: The functionality receives inputs Ja1KL, . . . , JanKL.
Output: Compute the following

(A) Reconstruct a1, . . . , an and compute k = argmax{a1, . . . , an}.
(B) Set ek = {e1, e2, . . . , en} with ei = 0 ∀i 6= k and ek = 1.
(C) Generate random shares of ak and ek and send back to the parties.

Figure 4.5: Ideal functionality for ΠMaxpool

FPow

Input: The functionality receives inputs JbKL and an index k ∈ {0, 1, . . . , ℓ− 1}.

Output: Compute each bit of α sequentially as follows:

(A) Reconstruct b.
(B) Compute α such that 2α ≤ b < 2α+1.
(C) If k = 0 send α[i] for i ∈ {ℓ− 1, . . . , 0} to all parties.
(D) If k 6= 0 send α[i] for i ∈ {ℓ− 1, . . . , k} to all parties and then Abort.

Figure 4.6: Ideal functionality for ΠPow

FDiv

Input: The functionality receives inputs JaKL, JbKL and an index k ∈ {0, 1, . . . , ℓ− 1}.

Output: Compute the following

(A) Reconstruct a, b.
(B) Compute α such that 2α ≤ b < 2α+1.
(C) If k = 0 send α[i] for i ∈ {ℓ− 1, . . . , 0} to all parties.
(D) If k 6= 0 send α[i] for i ∈ {ℓ− 1, . . . , k} to all parties and then Abort.
(E) Generate random shares of a · AppDiv(b) and send back to the parties

Figure 4.7: Ideal functionality for ΠDiv
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FBN

Input: The functionality receives inputs Ja1KL, . . . , JanKL and JγKL, JβKL and an index k ∈
{0, 1, . . . , ℓ− 1}.

Output: Compute the following

(A) Reconstruct a1, . . . , an and compute µ and σ2 as given in Step 1,2 of Algorithm 17.
(B) Set b = σ2 + ϵ and compute α such that 2α−1 ≤ b < 2α+1.
(C) If k = 0 send α[i] for i ∈ {ℓ− 1, . . . , 0} to all parties.
(D) If k 6= 0 send α[i] for i ∈ {ℓ− 1, . . . , k} to all parties and then Abort.
(E) Complete steps 4-8 of Algorithm 17 and return random shares of the output.

Figure 4.8: Ideal functionality for ΠBN

Proof. We first set up some detail on the proof strategy that is essential for other
proofs as well. For the ease of exposition, we describe it in the context of ΠPC. The
goal of designing a simulator is to be able to demonstrate the ability to produce
transcripts that are indistinguishable from the transcripts in the real world. The
joint distribution of the inputs and outputs is a part of these transcripts and hence
has to be indistinguishable in the two interactions. However, since the honest parties
simply forward their inputs to the functionality, the simulator must be able to extract
the inputs of the malicious parties to be able to generate the correct shares for the
honest parties.

The usual technique to achieve this is to have the simulator run a simulated version
of the protocol internally, i.e., emulating the roles of the honest parties and interacting
with the adversary. This is what we call an internal run. This internal run can then
be used to extract the inputs of the adversarial party (which can then be forwarded
to the functionality in the ideal interaction). Note that in the hybrid argument, since
the subroutines used in the protocol can be replaced by their corresponding ideal
interactions, the simulator can emulate the roles of these trusted functionalities in its
internal run.

In the specific context of ΠPC, the simulator S for adversary Adv works by playing
the role of the trusted party for FMult,FReconst, and FPrep. To be able to simulate, we
need to show that:
(A) All the transcripts from the real interactions can be simulated.
(B) The honest parties receive their outputs correctly.

Simulation follows easily from the protocol and the hybrid argument. The simulator
for ΠMult (along with the simulator for ΠReconst) can be used to simulate the transcripts
from Steps 2, 6 (from Algorithm 11). Note that the distributions of these transcripts
are all uniformly random values (β is required to make the transcript for β′ uniformly
random, the various bits u[i], w[i], and c[i] are random because x is random) and
hence achieve perfect security. Steps 3, 4, 7, and 8 on the other hand are all local
and do not need simulation.

To extract the inputs of the malicious party, the simulator uses the fact that it
has access to r and β (though FPrep) and all the internal values for the honest parties
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(in the internal run) and hence can extract the shares of x[i] from the corrupt party
P2. Finally, if the protocol aborts at any time in the internal run, then the simulator
sends Abort to FPC otherwise, it inputs the extracted shares of x[i] to FPC and the
honest parties receive their outputs.

Theorem 4.2. ΠWA securely realizes FWA with abort, in the presence of one malicious
party in the (FMult,FPC,FReconst,FPrep)-hybrid model.

Proof. We use a similar set-up as the proof of Theorem 4.1. Step 1 is local computa-
tion and does not need simulation. Steps 2, 4 can be simulated using the simulators for
FReconst,FPC respectively. Input extraction follows from having access to ri (through
FPrep) and output x if the protocol does not abort. Finally, if the protocol does abort
at any time in the internal run, then the simulator sends Abort to FWA. Otherwise,
it simply passes on the extracted shares of a[i] to FWA and the honest parties receive
their outputs. Note that ΠDReLU is not formally defined. However, this is simply local
computation over ΠWA and the proofs can be extended analogously.

Theorem 4.3. ΠReLU securely realizes FReLU with abort, in the presence of one ma-
licious party in the (FMult,FWA,FPrep)-hybrid model.

Proof. Simulation is done as before using the hybrid argument. The protocol simply
composes FWA and FMult and hence is simulated using the corresponding simulators.

Theorem 4.4. ΠMaxpool securely realizes FMaxpool with abort, in the presence of one
malicious party in the (FMult,FReLU,FPrep)-hybrid model.

Proof. Similar to the proof of Theorem 4.3, simulation works by sequentially com-
posing the simulators for FReLU and FMult.

Theorem 4.5. ΠPow securely realizes FPow with abort, in the presence of one malicious
party in the (FMult,FReLU,FReconst,FPrep)-hybrid model.

Proof. The simulator for Adv works by playing the role of the trusted party for
FMult,FReLU, and FReconst. The protocol sequentially reveals bits of the scale α. It is
important to note the functionality that it emulates (see in Figure 4.6). The simu-
lator runs the first iteration of the loop and in the process extracts the adversaries
inputs. Then it proceeds to complete all the iterations of the loop. If the protocol
proceeds without aborting till the end, then the simulator sends the extracted shares
of b along with k = 0 to the functionality FPow. If the protocol aborts at iteration k,
then the simulator sends the extracted shares of b along with k to FPow.

Theorem 4.6. ΠDiv, ΠBN securely realize FDiv, FBN respectively, with abort, in the
presence of one malicious party in the (FMult,FPow,FPrep)-hybrid model.

Proof. ΠDiv, ΠBN are sequential combinations of local computations and invocations of
FMult. Simulation follows directly from composing the simulators and input extraction
follows from the simulator of ΠPow.
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Table 4.2: Theoretical overheads of basic and compound protocols. Communication is in Bytes
where ℓ is the logarithm of the ring size and k is its Byte size. We use n to denote the size of the

vector in vectorized implementations.

Protocol Dependence Semi-Honest Malicious
Rounds Comm Rounds Comm

B
as

ic
P

ro
to

co
ls MatMul (x× y)(y × z) 1 kxz 1 2kxz

Private Compare n 2 + log2 ℓ 2kn 2 + log2 ℓ 4kn
wrap3 n 3 + log2 ℓ 3kn 3 + log2 ℓ 6kn

C
om

po
un

d
P

ro
to

co
ls

ReLU and
n 5 + log2 ℓ 4kn 5 + log2 ℓ 8knDerivative of ReLU

MaxPool and
n, {w, h} (wh− 1)(7 + log2 ℓ) 5k + wh (wh− 1)(7 + log2 ℓ) 10k + 2whDerivative of Maxpool

Pow n 5ℓ+ ℓ · log2 ℓ 4knℓ 5ℓ+ ℓ · log2 ℓ 8knℓ
Division n 7 + 5ℓ+ ℓ · log2 ℓ 4knℓ+ 7kn 7 + 5ℓ+ ℓ · log2 ℓ 8knℓ+ 14kn

Batch Norm r, n 15 + 5ℓ+ ℓ · log2 ℓ kr + 4krℓ+ 14krn 15 + 5ℓ+ ℓ · log2 ℓ 2kr + 8krℓ+ 28krn

Protocol Overheads. We theoretically estimate the overheads of our protocols
in Table 4.2. The dominant round complexity for Private Compare comes from the
string multiplication in Step 6. wrap3 requires one additional round and one additional
ring element (two in malicious security) over Private Compare. Computing derivative
of ReLU is a local computation over the wrap3 function. Computing ReLU requires
two additional rounds and one ring element (two for malicious)5. Maxpool and the
derivative of Maxpool require rounds proportional to the area of the filter. Finally,
Pow, division, and batch-norm require a quadratic number of rounds in ℓ.

4.4 Experimental Evaluation
We evaluate the performance of training and inference with Falcon on 6 networks
of varying parameter sizes trained using MNIST, CIFAR-10, and Tiny ImageNet
datasets (cf. Section 2.5). A number of prior works such as SecureML [85], Min-
iONN [77], Gazelle [64], SecureNN [109], ABY3 [84], and Chameleon [95] evaluate
some of these networks and we mimic their evaluation set-up for comparison.

4.4.1 Experimental Setup
We implement the Falcon framework in about 14.6k LoC in C++ using the com-
munication backend of SecureNN6. We run our experiments on Amazon EC2 ma-
chines over Ubuntu 18.04 LTS with Intel-Core i7 processor and 64GB of RAM. Our
evaluation set-up uses similar as compared to prior work [109, 84, 85, 95, 64]. We
perform extensive evaluation of our framework in both the LAN and WAN settings.
For the LAN setting, our bandwidth is about 625 MBps and ping time is about
0.2ms. For WAN experiments, we run servers in different geographic regions with
70ms ping time and 40 MBps bandwidth. The source code is available online at
https://github.com/snwagh/falcon-public.

5And one (two) additional bits.
6https://github.com/snwagh/securenn-public
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Optimizations: All data-independent computation, i.e., pre-computation, is par-
allelized using 16 cores to reduce the run-time. When a ReLU layer is followed by a
Maxpool layer, we swap the order of these two layers for optimized run-times. We use
the Eigen library for faster matrix multiplication and parallelize the Private Compare
computation. We optimize across the forward and backward pass for Maxpool, ReLU,
and Batch-Normalization layers, i.e., we compute the relevant derivatives while com-
puting the functions. We use 32-bit integer range with 16 bits of floating-point preci-
sion. As the entire codebase is parallelizable, in the future, significant improvement is
possible by implementing Falcon using TensorFlow or PyTorch which support easy
parallelization as well as computations over GPUs.

Table 4.3: Comparison of inference time of various frameworks for different networks using MNIST
dataset. All runtimes are reported in seconds and communication in MB. ABY3 and XONN do no

implement their maliciously secure versions. 2-party (2PC) and 4-party (4PC) protocols are
presented here solely for comprehensive evaluation of the literature.

Framework Threat Model LAN/ WAN Network-A Network-B Network-C
Time Comm. Time Comm. Time Comm.

2PC

SecureML [85] Semi-honest LAN 4.88 - - - - -
DeepSecure [96] Semi-honest LAN - - 9.67 791 - -
EzPC [25] Semi-honest LAN 0.7 76 0.6 70 5.1 501
Gazelle [64] Semi-honest LAN 0.09 0.5 0.29 0.8 1.16 70
MiniONN [77] Semi-honest LAN 1.04 15.8 1.28 47.6 9.32 657.5
XONN [94] Semi-honest LAN 0.13 4.29 0.16 38.3 0.15 32.1

Chameleon [95] Semi-honest LAN - - 2.7 12.9 - -
ABY3 [84] Semi-honest LAN 0.008 0.5 0.01 5.2 - -
SecureNN [109] Semi-honest LAN 0.043 2.1 0.076 4.05 0.13 8.86

Semi-honest LAN 0.011 0.012 0.009 0.049 0.042 0.51Falcon Malicious LAN 0.021 0.31 0.022 0.52 0.089 3.37
SecureNN [109] Semi-honest WAN 2.43 2.1 3.06 4.05 3.93 8.86

Semi-honest WAN 0.99 0.012 0.76 0.049 3.0 0.5

3PC

Falcon Malicious WAN 2.33 0.31 1.7 0.52 7.8 3.37

4PC FLASH [19] Malicious LAN 0.029 - - - - -
FLASH [19] Malicious WAN 12.6 - - - - -

Table 4.4: Comparison of inference time of various frameworks over popular benchmarking
network architectures from the machine learning domain. All run-times are reported in seconds

and communication in MB.

Framework Threat Model LAN/WAN LeNet (MNIST) AlexNet (CIFAR-10) VGG16 (CIFAR-10) AlexNet (ImageNet) VGG16 (ImageNet)
Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

Semi-honest LAN 0.047 0.74 0.043 1.35 0.79 13.51 1.81 19.21 3.15 52.56
Malicious LAN 0.12 5.69 0.14 8.85 2.89 90.1 6.7 130.0 12.04* 395.7*

Semi-honest WAN 3.06 0.74 0.13 1.35 1.27 13.51 2.43 19.21 4.67 52.56
Falcon

Malicious WAN 7.87 5.69 0.41 8.85 4.7 90.1 8.68 130.0 37.6* 395.7*

4.4.2 Results for Private Inference
Tables 4.3, 4.4 report the end-to-end latency time (in seconds) and number of bytes
(in MB) communicated for performing a single inference query with Falcon. We
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compare these values with the numbers reported from prior work wherever applicable.
All the numbers are reported for both semi-honest and malicious adversarial setting.
Further, we execute the queries in both LAN and WAN settings using Falcon.

Comparison to Prior Work. We compare the inference time of a single query
and the communication bytes of Falcon with prior work on Networks-A, B, and
C. None of the prior works evaluate the remaining networks and hence we do not
compare the performance of Falcon for the networks in Table 4.47. Depending on
the network architecture, our results are between 3×-120× faster than existing work.
In particular, Falcon is upto 18× faster than XONN [94] (11× on average) and 32×
faster than Gazelle (23× on average), 8× faster than SecureNN (3× on average), and
comparable to ABY3 on small networks. Falcon is also 40× more communication-
efficient than ABY3 [84], 200× more communication-efficient than SecureNN [109],
and over 760× more communication-efficient compared to XONN [94].

Inference time and communication with Falcon. For both the adversarial set-
tings, the inference latency for Falcon over LAN is within 25ms for smaller networks
(A and B) and around 100ms for Network-C and LeNet. For AlexNet and VGG16, the
inference time ranges from 0.5 to 12s depending on the model and the input dataset.
The inference time increases with the size of the input image. Hence, queries over
Tiny ImageNet are slower than CIFAR-10 for the same model architecture. The in-
ference time over the WAN setting ranges from 1 to 3s for the Networks-A, B, and C
and from 3 to 37s for the remaining larger networks. However, we emphasize that the
inference time with semi-honest adversarial setting is around 3× faster than that for
the malicious adversary. Hence, a faster deployment protocol is possible depending
on the trust assumptions of the application.

In addition to efficient response times, our results show that Falcon is optimized
for communication rounds as well. The parties exchange less than 4MB of data for
smaller networks (Table 4.3) and 5MB to 400MB for larger networks (Table 4.4).
The amount of data exchanged is the same for both the LAN and WAN settings.
However, similar to the inference time, more communication bytes are required for
the malicious setting as compared to the semi-honest adversary.

4.4.3 Results for Private Training
Tables 4.5, 4.6 report the execution time and the communication required for training
all the 6 network architectures.

Comparison to Prior Work. For private training, Falcon is upto 6× faster
than SecureNN [109] (4× on average), 4.4× faster than ABY3, and 70× faster than
SecureML [85]. We highlight that Falcon achieves these speedups due to improved
protocols (both round complexity and communication as described in Section 4.1.2).

7XONN [94] is evaluated on binarized model parameters of VGG16 and hence we do not compare
with it.

66



Table 4.5: Comparison of training time of various frameworks over popular benchmarking network
architectures from the security domain. All run-times are reported in hours and communication in
TB. * correspond to 2PC numbers. ABY3 does not implement their maliciously secure protocols.

Framework Threat Model LAN/ WAN Network-A Network-B Network-C
Time Comm. Time Comm. Time Comm.

SecureML [85]* Semi-honest LAN 81.7 - - - - -
SecureML [85] Semi-honest LAN 7.02 - - - - -
ABY3 [84] Semi-honest LAN 0.75 0.031 - - - -
SecureNN [109] Semi-honest LAN 1.03 0.11 - - 17.4 30.6

Semi-honest LAN 0.17 0.016 0.42 0.056 3.71 0.54Falcon Malicious LAN 0.56 0.088 1.17 0.32 11.9 3.29
SecureML [85]* Semi-honest WAN 4336 - - - - -
SecureNN [109] Semi-honest WAN 7.83 0.11 - - 53.98 30.6

Semi-honest WAN 3.76 0.016 3.4 56.14 14.8 0.54Falcon Malicious WAN 8.01 0.088 7.5 0.32 39.32 3.29

Batch Size, Epochs 128, 15 128, 15 128, 15

Table 4.6: Comparison of training time of various frameworks over popular benchmarking network
architectures from the machine learning domain. All run-times are reported in hours and

communication in TB.

Framework Threat Model LAN/ WAN LeNet AlexNet (CIFAR-10) VGG16 (CIFAR-10) AlexNet (ImageNet) VGG16 (ImageNet)
Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

Semi-honest LAN 6.05× 100 0.81 7.89× 101 7.24 8.43× 102 45.9 1.23× 104 222.9 5.19× 103 156.0
Malicious LAN 1.22× 101 4.82 2.82× 102 43.4 3.05× 103 185.3 4.63× 104 1598 1.95× 104 1012

Semi-honest WAN 1.85× 101 0.81 2.33× 102 7.24 2.09× 103 45.9 1.54× 104 222.9 6.89× 103 156.0
Falcon

Malicious WAN 5.20× 101 4.82 7.24× 102 43.4 5.26× 103 185.3 5.71× 104 1598 2.47× 104 1012

Batch Size, Epochs 128, 15 128, 90 128, 25 128, 90 128, 25

As seen from Table 4.5, the communication overhead is 10× to 100× better for Fal-
con as compared to other solutions.

Execution time for Falcon. The time to privately train Networks-A, B, and C
with Falcon is around 3 to 40 hrs. For larger networks, we extrapolate time from
a single iteration of a forward and a backward pass. The training time ranges from
a few weeks to hundreds of weeks. Although these values seem to be quite large,
high-capacity machine learning models are known to take from a few days to weeks
to achieve high accuracy when trained (both on CPU as well as GPU). Such networks
can also benefit from transfer leaning techniques, where a public pre-trained model is
fine-tuned with a private dataset. This fine-tuning requires fewer epochs and hence
can speed up the overall run-time considerably.

4.4.4 Compute vs. Communication Cost
Figure 4.9 shows the computation time as compared to the communication time for
the inference of a single input over different network sizes. We observe that the
computation cost increases with the network size and becomes the dominant reason
for the performance overhead in private deep learning with Falcon. The reason for
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this is because the complexity of matrix multiplication is “super-quadratic” i.e., to
multiply two n× n matrices, the computation overhead is strictly larger than O(n2).
Note that the communication of the matrix multiplication protocol in this work is
only linear in the size of the matrices and has a round complexity of a single round.
On the other hand, the non-linear operations, though more communication expensive
in MPC, are applied on vectors of size equal to the output of the matrix product and
thus are “quadratic.” In other words, the non-linear operations such as ReLU are
applied on the output of the matrix multiplication (FC/Conv layers) and are applied
on vectors of size O(n2) assuming they are applied on the output of the multiplication
of two n × n matrices. Hence, for large network architectures, the time required for
the matrix-multiplication dominates the overall cost.

Figure 4.9: Computation vs. communication cost for private inference using Falcon in a WAN
deployment for the malicious adversary setting. It is interesting to note that as the network size

increases, computation becomes a dominant factor in the overall end-to-end run-time.

This observation is against the conventional wisdom that MPC protocols are com-
munication bound and not computation bound. When running larger networks such
as AlexNet and VGG16, and especially for Tiny ImageNet, the computation time
starts becoming a significant fraction of the total time. Hence, we claim that Fal-
con is optimized for communication rounds, specifically when operating over large
networks. With our results, we motivate the community to focus on designing faster
compute solutions using accelerators such as GPUs, parallelization, efficient matrix
multiplications and caching, along with the conventional goals of reducing communi-
cation and round complexity.

4.4.5 Comparison vs. Plaintext Computation
Given the surprising insights from Figure 4.9, we also compare the execution of
privacy-preserving computations with plaintext computations. These results are sum-
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marized in Table 4.7. We use standard PyTorch libraries for the plaintext code, similar
hardware as that of privacy-preserving benchmarks for CPU-CPU comparison, and
use a single Nvidia P100 GPU for the GPU-CPU comparison. Our findings indicate
that private deep learning (over CPU) is within a factor of 40×-1200× of plaintext
execution of the same network over CPU and within 50×-four orders of magnitude
that of plaintext execution over GPU (using PyTorch) when performed over LAN.
The overhead further increases by 1.2×-2.4× when comparing against WAN evalua-
tions. This indicates the importance of supporting GPUs and optimizers for private
deep learning and showcases the need for further reducing the overhead of MPC pro-
tocols. We believe that it is beneficial for the broader research community to have an
estimate of the gap between plaintext and privacy-preserving techniques for realistic
size networks and datasets.

Table 4.7: Comparison of private computation (for semi-honest protocols, cf Section 4.4.1 for
network parameters) with plaintext over the same hardware using PyTorch and a single NVIDIA

P100 GPU. Numbers are for a 128 size batch in milliseconds.

Run-type
CIFAR-10 Tiny ImageNet

Training Inference Training Inference
AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16

Plaintext CPU-only localhost 1.6× 102 7.3× 102 7.2× 101 3.4× 102 5.0× 102 3.1× 103 2.5× 102 1.3× 103

GPU-assisted localhost 2.8× 101 6.4× 101 3.8× 101 5.8× 101 3.6× 101 1.2× 102 3.8× 101 5.7× 101

Private CPU-only LAN 6.4× 103 2.5× 105 5.6× 103 1.0× 105 6.3× 105 9.5× 105 2.3× 105 4.0× 105

CPU-only WAN 2.4× 104 6.2× 105 1.7× 104 1.6× 105 7.8× 105 1.2× 106 3.1× 105 5.9× 105

Private Bandwidth 6.4× 103 2.5× 105 5.6× 103 1.0× 105 6.3× 105 9.5× 105 2.3× 105 4.0× 105

4.4.6 Batch Normalization and Accuracy
We study the benefits of batch normalization for privacy-preserving training of neural
networks. We compute the accuracy of partially trained models after each epoch
with and without the batch normalization layers. As seen in Figs. 4.10a, 4.10b, batch
normalization layers not only help train the network faster but also train better
networks. Fig. 4.10c demonstrates the overhead of MPC protocols with and without
batch normalization layers. Given the high round complexity of batch normalization,
the gap is significant only in the WAN setting.

We also study the effect of our approximations and smaller datatype on the ac-
curacy of the computation. We compare the evaluation of the networks with 64-bit
float datatypes over PyTorch against a 32-bit datatype uint32_t using fixed-point
arithmetic for Falcon. The final layer outputs differ by small amounts (less than 1%)
in comparison with the high precision 64-bit computation. As a consequence, as seen
in Table 4.8, most networks show no/low loss in the overall neural network accuracy
when the computation is performed as fixed-point integers over 32-bit datatype. This
is because the final prediction is robust to small relative error in individual values
at the output. This also makes the final prediction vector inherently noisy and may
provide some defense against model inversion attacks.
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Table 4.8: Summary of experiments involving accuracy of NNs using secure computation. The first
two columns refer to the plaintext accuracies and relative error refers to the average relative error

of one forward pass computation using Falcon.

Network Training Inference Falcon Inference Relative
Accuracy Accuracy Accuracy Error

Network-A 98.18% 97.42% 97.42% 0.471%
Network-B 98.93% 97.81% 97.81% 0.635%
Network-C 99.16% 98.64% 98.64% 0.415%

LeNet 99.76% 99.15% 96.85% 0.965%

(a) (b) (c)

Figure 4.10: In Figs. 4.10a, 4.10b, we study the model accuracy with and without batch norm
layers as a function of epochs for AlexNet network. As can be seen, batch normalization not only

helps train the network faster but also train better networks. In Fig. 4.10c, we study the
performance overhead of running the network (using Falcon) with and without batch norm layers.

4.5 Summary
In this work, we develop new protocols for private training and inference in a honest-
majority 3-party setting. Theoretically, we propose novel protocols that improve the
round and communication complexity and provide security against maliciously cor-
rupt adversaries with an honest majority. Falcon thus provides malicious security
and provides several orders of magnitude performance improvements over prior work.
Experimentally, Falcon is the first secure deep learning framework to examine per-
formance over large-scale networks such as AlexNet and VGG16 and over large-scale
datasets such as Tiny ImageNet. We also are the first work to demonstrate effi-
cient protocols for batch-normalization which is a critical component of present day
machine learning.
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Chapter 5

Ponytail: Homomorphic
Encryption for Faster Multi-Party
Computation

Secure Multiparty Computation (MPC) allows a set of parties to compute over their
inputs while keeping them private. Over the span of few decades, this field has turned
theoretical ideas into practical implementations that allow one to compute over a
billion private multiplications per second [5]. The growth of computing on encrypted
data has sparked interest in combining MPC with ML, which allows distrusting parties
to perform ML tasks such as evaluating private decision trees and support vector
machines [95] or evaluating and training NNs, on their joint data [85, 84, 109, 71, 9].

One important building block in all these works is secure matrix multiplication,
which is often achieved by computing many dot products a⃗ · b⃗. In the case of an hon-
est majority corruption model, this problem has a straightforward solution: parties
multiply locally each entry ai ·bi and then re-randomize the sum

∑
i ai ·bi to the other

parties. Hence, the cost of a dot product is a single opening which is independent
of the vector sizes. However, in the case of a dishonest majority corruption mode,
the dot product protocol must use some correlated randomness, e.g. Beaver triples,
for each multiplication since the secret sharing scheme is no longer multiplicative.
Such triples require expensive public key operations and a lot of research is focused
on computing these triples more efficiently via somewhat homomorphic encryption
(SHE) or oblivious transfer [13, 39, 65, 66].

The SPDZ framework [39, 38, 66, 10] is a state-of-the-art protocol for dishonest-
majority MPC under one of the strongest adversarial settings – it assumes all-but-one
corruption and malicious security, meaning that all parties except one can be con-
trolled by the adversary, and can arbitrarily deviate from the protocol description.
Moreover, SPDZ is proven secure under the Universal Composability (UC) framework
of Cannetti [21], which means in particular that it is still secure when composed arbi-
trarily with other MPC protocols. Under the SPDZ framework, even if a fast matrix
multiplication algorithm such as Strassen’s algorithm is used, securely multiplying
two n× n matrices in SPDZ uses at least O(n2.8) authenticated Beaver triples. This
is prohibitively expensive when targeting applications with a large number and sizes
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of matrix multiplications. For instance, the deep convolutional neural network (CNN)
ResNet-50 [59] requires more than 4 billion multiplications of plaintext values1. Cur-
rently, the best known two-party triple generation algorithm over a 128-bit prime
field produces 30, 000 triples per second on modest hardware and requires a commu-
nication of 15 kbits per party [66]. Using such an approach, the preprocessing phase
for evaluating convolution layers of ResNet-50 will require each party to send 5 TB of
data. Our work reduces the communication by a factor of about 121×, while keeping
the same adversarial setting. The contributions of this work can be summarized as
below:

(A) We adopted an idea from SecureML [85] of classical Beaver triples to multiply
matrices, integrating this idea within the SPDZ framework. This enables com-
puting any bilinear operation efficiently in a dishonest majority MPC setting.
We focus on two types of bilinear operations, matrix multiplications and two-
dimensional convolutions. We call the correlated randomness ‘matrix triple’
and ‘convolution triple’ respectively. We then use the state-of-the-art algo-
rithm for HE matrix multiplication [63] to efficiently generate authenticated
matrix triples with low communication complexity. Such algorithms allow us
to have a communication cost linear in the size of the input and output, and
independent of the complexity of the operation itself, in both offline and online
phases. For example, in terms of matrix multiplication of n-by-n matrices, our
method reduced the communication from O(n3) to O(n2) required by SPDZ,
with similar computational overhead.

(B) We introduced some further optimizations to the offline phase of SPDZ:

• We avoid the “sacrifice” procedure in SPDZ via switching to slightly larger
HE parameters which supports evaluation of circuits of one additional
depth. By doing so, we further saved a factor of (almost) two in overall
communication and computation.

• We optimized the zero-knowledge proof of plaintext knowledge (ZKPoPK)
in the offline phase of SPDZ, reducing the amortized communication over-
head for proving each ciphertext from 2.5 to roughly 1.5.

(C) We demonstrated the concrete efficiency of our protocols for (1) private ma-
trix multiplications and (2) private neural network inference in the two-party
case. In the former case, we benchmarked the private matrix multiplications
over various matrix sizes while in the latter, we benchmarked evaluation of all
convolution layers of ResNet-50, a massive, state-of-the-art NN for image classi-
fication with 52 layers. The preprocessing phase improves by a factor of at least
121 compared to SPDZ. We integrated the convolution triples in MP-SPDZ [40]
to evaluate the online phase ResNet-50 convolutions. Our approach reduces the
online communication overhead from 86.9 GB to only 0.54 GB (for a plaintext
modulus p ≈ 2128), which amounts to a factor of at least 150× improvement
over the existing matrix multiplication in SPDZ using Strassen’s algorithm.

1This is considering the scenario that both the model (i.e., ResNet-50 weights) and inference
inputs are secret shared.
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5.1 Ponytail Overview
In this section, we introduce the notation and other important concepts central to
the contributions of this work. In Section 5.2, we introduce our changes to the SPDZ
framework to better support bilinear operations, including an algorithm to generate
authenticated matrix triples, an optimization which removes the sacrifice procedure,
and optimizations on the ZKPoPK. We go on to present the experimental results for
private matrix multiplication, private nearest neighbor search, and pirvate evaluation
of ResNet-50 in Section 5.4.

Notation. We use x⃗ to denote vectors, i.e., x⃗ = (x1, . . . , xk) for some k specified
in the context. We also use the notation [k] to denote the set {1, 2, . . . , k}. For a
positive integer q, we identify Zq = Z ∩ (−q/2, q/2]. For a finite set S, U(S) denotes
a uniform distribution over S.

Adversarial setting. Our protocols in this work follow the same adversarial setting
as SPDZ [39, 38], meaning that they are secure under all-but-one corruption and
malicious security (we will refer to this setting as dishonest majority for short). Also,
our protocol is proven secure under the UC framework, a property inherited from
SPDZ.

5.1.1 Authenticated Shares in SPDZ
Let n be the number of parties involved in the MPC. In the SPDZ framework, all
computations are performed over the finite field Zp with prime p. We use JxKα to
denote “authenticated shares”, i.e., the i-th party holds (xi, mi) such that x ≡ x0 +
. . .+xn−1 (mod p) and α ·x ≡ m0+ . . .+mn−1 (mod p), where α is the global MAC
key and is shared between the parties as αi such that α ≡ α0 + . . . + αn−1 (mod p).
In other words,

JxKα := {(xi,mi, αi)}ni=1 such that∑
i

mi ≡

(∑
i

αi

)
·

(∑
i

xi

)
(mod p)

(5.1)

5.1.2 Bilinear Triples
Beaver’s multiplication triple technique is widely used in secure computation in both
the semi-honest and malicious adversarial settings [13, 38, 85, 109]. Let F be a
finite field. Recall that a multiplication triple is a tuple ([a], [b], [c]) where a, b ∈ F
are random elements such that c = a · b. Here [x] represents an additive sharing
of x where each party has a share xi such that

∑n
i=1 xi = x. These multiplication

triples can be utilized to perform private multiplication: in order to multiply secret-
shared values x and y. The parties reveal x − a and y − b, and compute [x · y] =
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(x− a) · (y − b) + [a] · (y − b) + (x− a) · [b] + [c]. In the dishonest majority malicious
adversarial setting, SPDZ enhances the above to authenticated triples (JaK,JbK,JcK).

Mohassel and Zhang [85] generalized the above notion to “matrix triples” and
applied it to secure training of ML models in the semi-honest setting. We take this
idea further and consider triples for any bilinear operation in the stronger dishonest
majority adversarial setting, integrating our protocol with the SPDZ preprocessing
framework.

Bilinear triples. Let l,m, k be positive integers and let ⊛ : Fl × Fm → Fk be
a bilinear function2. We define a ⊛-triple as a tuple of secret sharings [a], [b], [a ⊛
b] where a, b are uniformly random. Given such a triple, it is simple to securely
compute a secret sharing of x⊛ y given secret sharings of x and y following Beaver’s
method verbatim. Note that when ⊛ is scalar multiplication, we get back Beaver’s
multiplication triple; when ⊛ is matrix multiplication, we get the matrix triple in
[85]. Another example is convolution, described in more detail below.

Using⊛-triples instead of Beaver triples for securely computing bilinear operations
has an advantage of lower communication cost in the triple consumption phase. For
example, multiplying two n-by-n matrices with Beaver triples would cost O(n3) field
elements being communicated, or O(nlog 7+o(1)) using Strassen’s algorithm, whereas
using matrix triple only amounts to O(n2) communication cost. Importantly, we
will see that using ⊛-triples can also reduce the communication cost in the triple
generation phase using HE.

Convolutions. Convolution is a bilinear operation between tensors widely used by
DNNs [74, 70]. Here we will define and discuss two-dimensional convolutions, since
they are used by a ResNet-50 network [59] we use for benchmarking, but our approach
can be easily generalized to all dimensions.

Let Aijk be an input tensor, where 1 ≤ i ≤ h and 1 ≤ j ≤ w are spatial
coordinates, and 1 ≤ k ≤ s is the channel. Suppose we would like to compute
an (2l + 1)× (2l + 1)-convolution for some l ≥ 0, given by a tensor B∆i,∆j,k,k′ , where
−l ≤ ∆i,∆j ≤ l are shifts of the spatial coordinates, and 1 ≤ k ≤ s and 1 ≤ k′ ≤ s′

are the channels. The resulting tensor Cijk′ = conv(A,B) has h×w spatial coordinates
and s′ channels and is defined via the formula:

Cijk′ =
∑

∆i,∆j,k

Ai+∆i,j+∆j,k ·B∆i,∆j,k,k′ ,

where in the right-hand side, we set the entries of A to be zero if i + ∆i or j + ∆j
are outside of the ranges [1;h] and [1;w] respectively. Since convolution is bilinear,
we can consider convolution triples, that is secret shares of uniformly random tensors
A,B and secret shares of conv(A,B).

We can reduce convolution to matrix multiplication as follows: we create an wh×
(2l + 1)2 · s matrix A with A(i,j)(∆i,∆j,k) = Ai+∆i,j+∆j,k, as well as an (2l + 1)2 · s× s′

2A function ⊛ is called bilinear if it satisfies the relations (αx1 + x2) ⊛ y = α(x1 ⊛ y) + x2 ⊛ y
and x⊛ (αy1 + y2) = α(x⊛ y1) + x⊛ y2 for arbitrary α ∈ F, x1, x2, x ∈ Fl and y1, y2, y ∈ Fk.
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matrix B defined as: B(∆i,∆j,k)k′ = B∆i,∆j,k,k′ . Then one can extract C from the
product C = AB (which is of size wh × s′) as follows: Cijk′ = C(i,j)k′ . Note that
1 × 1 convolution (l = 0) is exactly matrix multiplication. When l > 0, one of the
matrices A is obtained from (2l + 1)2 stacked permuted instances of the flattening
of A. Overall, using this reduction, we can compute the convolution in O((2l + 1)2 ·
whss′) operations3. Thus, evaluating the convolution using the authenticated Beaver
triples in SPDZ requires O((2l + 1)2 · whss′) communication. In contrast, using
our convolution triples yields a communication cost of merely O((wh + s′) · s · (2l +
1)2). Sometimes, one is willing to stride the convolution. This simply corresponds
to the regular sampling of the i, j coordinates of the answer. In terms of matrix
multiplications, this corresponds to sampling a subset of rows of A.

5.1.3 Matrix Multiplication Using HE
We recall the protocol from [63] which transforms square matrix multiplications into
HE-friendly operations. For a d × d square matrix A = (ai,j)0≤i,j<d, we first define
useful permutations σ, τ , ϕ, and ψ on the set Zd×d

p . For simplicity, we assume that
N/2 = d2. All the indices will be considered as integers modulo d. Let σ(A)i,j = ai,i+j,
τ(A)i,j = ai+j,j, ϕ(A)i,j = ai,j+1, and ψ(A)i,j = ai+1,j. Then for two square matrices
A,B of order d, we can express the matrix product A×B as follows:

A×B =
d−1∑
k=0

(
ϕk ◦ σ(A)

)
�
(
ψk ◦ τ(B)

)
, (5.2)

where � denotes the component-wise multiplication between matrices (see Section
3.1 of [63] for more detail).

We can identify a matrix of order d×d with a vector of length d2 via the encoding
map Zd2

p → Zd×d
p , a⃗ = (a0, . . . , ad2−1) 7→ A = (ad·i+j)0≤i,j<d. A ciphertext will be

called an encryption of A if it is an encryption of the plaintext vector a⃗. Suppose
that we are given two ciphertexts cA and cB that encrypt σ(A) and τ(B), respectively.
Then we define the homomorphic matrix product by

cA ⊛ cB =
d−1∑
k=0

(
ϕk(cA)⊠ ψk(cB)

)
, (5.3)

where c⊠ c′ denotes the homomorphic multiplication between two ciphertexts c and
c′. The permutations ϕk and ψk are fixed linear transformations over Zd2

p , which can
be evaluated as described above. The evaluation of a permutation includes only two
homomorphic rotations since the matrix representation of ϕk or ψk has two nonzero
diagonals. It follows from Eq. (5.2) that cA ⊛ cB is an encryption of A×B.

The authors of [63] implemented the matrix multiplication algorithm over the
CKKS scheme [30], while we apply the same algorithm to the BFV scheme encrypt-

3In principle, one can speed it up using Fourier or Winograd transforms [73], but we leave the
study of these algorithms in the secure setting for the future work.
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ing two vectors of dimension (N/2) with entries in Zp. We will encrypt two square
matrices A and B of size d =

√
N/2 in a single ciphertext. As noted in Section 2.3.1,

the BFV scheme supports parallel arithmetic operations and permutations on two
vectors. Hence, we can perform two homomorphic matrix multiplications simultane-
ously by fully utilizing the slots.

5.2 Protocol Constructions
We describe our major contributions in this section. First, we propose our algorithm
for generating authenticated matrix triples. Then, we introduce two other optimiza-
tions – the first one improves the triple generation phase, by carefully choosing the HE
parameters to avoid the sacrifice stage while the second one improves the ZKPoPK
in SPDZ.

5.2.1 Generation of Bilinear Triples
We present an improvement to the SPDZ framework to support efficient bilinear
operations, in particular matrix multiplications and convolutions. Recall that the
offline phase of the SPDZ framework generates Beaver triples, which means that
to multiply two square matrices of size d we need to consume M(d) triples, where
M(d) is the complexity of the matrix multiplication algorithm of choice. In order to
minimize the communication overhead, we designed a new preprocessing protocol for
generating matrix and convolution triples and use HE algorithms to generate these
triples. In the online phase, they are consumed in essentially the same way as Beaver
triples. Such triples allow us to have communication linear in the size of the input
and output, and independent of the number of multiplications, in both offline and
online phases.

On a high level, our protocol for generating authenticated matrix triples works as
follows. First, each party Pi selects uniformly random matrices Ai, Bi and sends an
encryption of these matrices to the other parties. Then, the parties engage in the n-
party ZKP to obtain verified encryptions of A =

∑
Ai and B =

∑
Bi with bounded

noise. Next, parties use the homomorphic matrix multiplication algorithm (from Sec-
tion 5.1.3) to compute an encryption of C = AB. Finally, parties use homomorphic
multiplication to compute encryptions of αA, αB, αC, and perform distributed de-
cryption on the resulting ciphertexts. In this way, the parties end up with a valid
authenticated triples (JAKα, JBKα, JCKα). We provide the formal description of our
pre-processing protocol in Figure 5.1, with the distributed decryption protocol in
Figure 5.2. We divide the presentation of this section into the presentation of the
protocols for the offline phase ΠPrep and the distributed decryption subroutine ΠDDec.

Theorem 5.1. In the (FPrep, FCommit)-hybrid model, the protocol ΠOnline (Figure C.8)
implements FOnline with statistical security against any static, active adversary cor-
rupting up to n− 1 parties.
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ΠPrep

Usage: We execute ΠPoPK by batching u ciphertexts together. At the same time, we
use the SIMD properties of HE to optimally compute on N plaintext elements at
the same time (cf. Sec 5.4.1). Calls to ΠPoPK are amortized in batches of u, a
detail omitted for simplicity. Also, randomness used in the encryption is implicit
and is the randomness used for a fresh ciphertex (cf. Sec 5.1)

Initialize: All parties first invoke FKeyGenDec to obtain the public key pk. Then:

(A) Each party generates αi ← Zp. Let α :=
∑

i α
i (mod p).

(B) Each party computes and broadcasts a fresh encryption ciα ← Encpk(αi)
(Note that this ciphertext has αi in all the N slots. Refer Sec. 5.1).

(C) The parties invoke protocol ΠPoPK on ciphertexts cαi for i ∈ [n].
(D) All parties compute cα ←

∑
i c

i
α.

Authenticated Singles: Parties run this protocol to generate u ·N random authen-
ticated shares in Zp in one invocation. Let i ∈ [n] and k ∈ [u].

(A) All parties sample random rik ← U(Rp). Each party computes and broad-
casts cirk = Encpk(rik). Let crk ←

∑
i c

i
rk
.

(B) The parties invoke protocol ΠPoPK on the u ciphertexts cirk .
(C) Parties run ΠAddMacs to generate

(
γ(rk)

1, . . . , γ(rk)
n
)
← AddMacs(crk).

(D) Parties output JrkKα =
((
r1k, γ(rk)

1
)
, . . . , (rnk , γ(rk)

n)
)
.

Matrix Triples: For the ease of exposition, we encode one matrix in one ciphertext.
Refer to Section 5.4.1 for more details on how to optimally use all the ciphertext
slots. Let ⊛ refer to the HE ciphertext-ciphertext matrix multiplication relation
defined in Section 5.1.3. Let j ∈ [d1], k ∈ [d2], and l ∈ [d3]. Steps (A)-(J) are
done for all j, k, l in their respective ranges. Set v = (secs + 2)/ log2(2N + 1)

(A) Each party generates random Ai
jk ← U(Rp) and Bi

kl ← U(Rp).
(B) Compute and broadcast ciAjk

← Enc(σ(Ai
jk)) and ciBkl

← Enc(τ(Bi
kl)).

(C) All parties invoke ΠPoPK for ciAjk
and ciBkl

for each i ∈ [n].
(D) All parties set cAjk

← 2 ·
∑

i c
i
Ajk

and cBkl
← 2 ·

∑
i c

i
Bkl

.
(E) All parties compute cCjl

←
∑

k cAjk
⊛ cBkl

.
(F) Parties run ΠAddMacs to generate (γ(Ajk)

1, . . . γ(Ajk)
n) ← AddMacs(cAjk

)
and (γ(Bkl)

1, . . . γ(Bkl)
n)← AddMacs(cBkl

).
(G) Parties run ΠDDec to generate

(
C1
jl, . . . C

n
jl

)
← DDec(cCjl

).
(H) Parties run ΠAddMacs to generate

(
γ(Cjl)

1, . . . γ(Cjl)
n
)
← AddMacs(cCjl

).
(I) Set Ai

jk ← 2 ·Ai
jk and Bi

kl ← 2 ·Bi
kl.

(J) Generate matrix A by using Ai
jk as sub-matrix blocks – k blocks per row

and j blocks per column. This forms a matrix of dimensions (dm ·block size)
where m ∈ {1, 2} Similarly, rearrange the γ(Ajk)

i and set this group of 2
matrices as JAK. Similarly, set JBK and JCK (no scaling by 2 for C).

Figure 5.1: Protocol for generating various preprocessing material
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ΠDDec

Distributed Decryption: Parties run the following protocol:

(A) Parties generate ri ← U(Rp). Let cm := (c0, c1).
(B) Compute vi as follows:

vi =

{
c0 + c1 · si if i = 1

c1 · si if i 6= 1

(C) Broadcast ti ← ∆ · ri + vi + ei (mod q) where ei ← U(RB·2secdd ).
(D) Party i = 1 outputs m1 = b∆−1 ·(

∑
i t

i)e−r1 (mod p) while all other parties
(i 6= 1) output mi = −ri (mod p).

(E) Finally, Decode(mi) to obtain of vector of plaintexts encoded in each mi.

Figure 5.2: Protocol for distributed decryption.

Theorem 5.2. If the underlying cryptosystem is somewhat homomorphic and IND-
CPA secure, then ΠPrep (Figure 5.1) implements FPrep with computational security
against any static, active adversary corrupting up to n − 1 parties, in the (FKeyGen,
FRand)-hybrid model.

Theorem 5.3. The protocol ΠDDec securely implements FKeyGenDec in the FKeyGen-
hybrid model with statistical security against any static adversary corrupting upto
n − 1 parties if B′ is an upper bound on the noise of the input ciphertext, and
B′ · 2n · 2secdd < ∆.

Proof of Theorems 5.1, 5.2, and 5.3 are presented in Appendix C.

5.2.2 Authenticating Triples Without Sacrifice
To introduce this optimization, we first recall the technique of authenticated multipli-
cation triples as proposed by the SPDZ line of work [39, 38]. In the framework, there
is a global MAC key α ∈ Fp and parties have access to a ciphertext cα encrypting
α, here the ciphertext is generated via an HE scheme, whose public key is known to
all parties and the secret key is secret-shared among the parties4. During the triple
generation phase, parties obtain ciphertexts cx, cy, cz where supposedly the relation
z = xy holds. In order to authenticate the secret values x, y and z, the parties
engage in an AddMacs subroutine (this is a common procedure to prevent malicious
behavior for dishonest majority protocols, cf [39, 38]), in which parties compute and
then jointly decrypt cα ⊠ ct to obtain secret shares of α · t for t ∈ {x, y, z}. However,
a malicious adversary can inject an error term ϵ into z such that z = xy + ϵ, and
the AddMacs subroutine could authenticate such an incorrect triple, which corrupts
the final computation result. In order to resolve this issue, a step called sacrifice

4The initialize phase in ΠPrep will require Diag flag similar to [39, 38] to ensure that the ciphertext
encodes the same MAC key in the same slots.
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was introduced, where one triple is consumed to check the correctness of the other.
Sacrificing brings a two times overhead to the complexity of the triple generation
phase.

We begin by noting that SPDZ only uses a depth-1 HE, i.e., the underlying HE
scheme could support one multiplication. Recall that in the SPDZ triple generation,
after computing a ciphertext cz = cx ⊠ cy, the Reshare procedure is called which out-
puts secret shares of z′ and a new ciphertext cz′ with smaller noise than cz. Then, the
AddMacs procedure is called, which produces authenticated share Jz′Kα. In particular,
to generate shares of the MAC on z, prior work requires that the distributed decryp-
tion subroutine to be called on z to get a level-1 ciphertext (z′) that enables adding
the MAC on it. This way, an additive error introduced in z can be “authenticated”
using the AddMacs procedure by the adversary. To prevent against such an attack,
prior work required a sacrifice of one triple with other which was proved to ensure
that the triples do not have an error. The MacCheck ensures that any such additive
error introduced is caught with high probability.

In our work, we modify the HE parameters to support larger depth, in particular
depth-2 computation. The homomorphic encryption product (z = xy) is done over
public ciphertexts and hence z is guaranteed to equal xy. However, to add MACs to
the product z, we do not need to run a distributed decryption protocol (we only need
it for generating the shares of z but not for the MAC generation). In our work, we
directly call the AddMacs routine on the public ciphertext for z, i.e., cαz = cz ⊠ cα,
and perform distributed decryption on cαz to obtain the MAC shares. This ensure
that the additive error introduced by the adversary when running DDec on cz to get
shares of z is independent of α from the additive error introduced in the DDec of
cαz. This way, we eliminate the need for a sacrifice and simply rely on the MacCheck
subroutine to catch malicious behavior.

Thus, we save the computation and communication by a factor of two, with a less-
than-two additional overhead due to the need to increase underlying HE parameters
to support larger depth computations. This optimization is particularly useful in our
bilinear triple generation protocol, since in this case we already need to increase the
HE parameters in order to run the homomorphic matrix multiplication algorithm,
and the overhead of supporting just one more depth is small.

5.2.3 Improved ZKPoPK Based on BFV Scheme
In the SPDZ offline phase, parties need to use a HE scheme (the BGV scheme of Brak-
erski, Gentry, and Vaikuntanathan [17]) to encrypt of random values, and broadcast
these encryptions. Then, they run homomorphic evaluation and distributed decryp-
tion to generate the multiplication triples. Since parties could be malicious, each
party needs to prove that it is providing a valid ciphertext. In the context of BGV,
this means the coefficients of the message and randomness used in the encryption
method must be bounded in size. The ZKPoPK to validate these ciphertext follows
a 3-move Schnorr protocol pattern. The goal is to prove knowledge of message x and
encryption randomness r with bounded size, such that cx,r = b. The prover chooses
some random mask values yx, yr and sends cyx,yr to the verifier. After the verifier

80



selects a challenge e the prover sends back the masked values zx = yx + e · x and
zr = yr + e · r. Finally, the verifier checks whether czx,zr = cyx,yr + e · b and whether
the noise and plaintext bounds are correct on producing cx by checking the norm
of zx and zr. The state-of-the-art ZKPoPK in [10] enhances the above approach by
designing an n-prover protocol which adds the ability to prove the validity of sum of
n ciphertexts instead of proving each individual ones.

Our modification. We note that the BFV HE scheme of Brakerski/Fan-
Vercauteren [16, 47] provides the same functionalities as the BGV scheme, while the
two schemes have some subtle differences, which we will exploit for our improved
ZKP. In particular, BFV allows selecting the plaintext modulus p to divide the
ciphertext modulus q, which is not allowed in BGV5. We will use this fact to simplify
and reduce the complexity of the ZKPoPK component in SPDZ. Recall that the
BGV encryption of a message m with public key pk and randomness (u, e0, e1) is

c = u · pk + (m+ pe0, pe1) (mod q). (5.4)

Although an honest party would encrypt a message m ∈ Rp with ‖m‖∞ ≤ p/2, a
malicious party can use any m ∈ R, and the excess part m − [m]p goes into the
noise of the ciphertext. Hence the prover needs to prove that ‖m‖∞ is not too
large. This is done by having the prover send encryptions of random messages y with
log ‖y‖∞ ≈ seczk + log p and later reveal a linear combination of y and m. On the
other hand, in the BFV scheme, an encryption of m is the form of

c = u · pk + (∆ ·m+ e0, e1) (mod q), where ∆ = bq/pe. (5.5)

Suppose p divides q, then ∆ = q/p exactly, and using a message m ∈ R in the en-
cryption algorithm is equivalent to using [m]p due to the automatic reduction modulo
q on the ciphertexts. Therefore, the prover in our ZKPoPK only needs to prove up-
per bounds on the encryption randomness, and it suffices to sample the “masking
elements” y as random elements in Rp. This reduces the size of the proof, since we
reduce the coefficients of the masked plaintexts sent by the prover (the terms zi in
[10, Figure 1]) from log p+ log seczk bits down to log p bits.

ZKPoPK. The zero-knowledge proof of plaintext knowledge we describe next (Fig-
ure 5.3) is a n-party ZKP used in the preprocessing phase. The n players all simulta-
neously act as the provers and the verifiers. Sampling is an algorithm that describes
the behavior of honest parties to generate their ciphertexts and broadcast them to
the other parties. This algorithm satisfies the relation given in Eq. 5.6. However,
ΠPoPK provides weaker guarantees as given in Eq. 5.7 which will be sufficient for the
preprocessing phase6. In particular, the protocol introduces a soundness slack in the

5gcd(p, q) = 1 is required for security of BGV
6This is the worst case gaurantee when all provers are dishonest while at least one verifier is

honest, which in the case when provers and verifiers are the same entities is the dishonest majority
model.
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bounds that can be proven on the witness. The protocol works in the standard 3-move
Schnorr protocol pattern as described below:

(A) Each party Pi independently runs the “commitment” algorithm on (xi, wi) to
get (commi, statei) ← Commit(xi, wi) and broadcasts commi to all the other
parties.

(B) The n parties jointly generate a challenge w (produced via a call to an ideal
functionality FRand)

(C) Each party Pi independently runs the “response” algorithm to get respi ←
Response(statei, w)

(D) Each party Pi independently runs the “verification” algorithm and accept if the
output is true: Verify({commi, respi}i∈[n], w) == True.

Ru,Honest
PoPK =

{(
(x1, . . . , xn) , (w1, . . . , wn)

)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai1, r

i
a1
), . . . (aiu, r

i
au)
)
:

cak = Encpk(ak, rak) and
‖rak‖ ≤ n where

cak =
∑
i

ciak and rak =
∑
i

riak

}
(5.6)

Ru,2
PoPK =

{(
(x1, . . . , xn) , (w1, . . . , wn)

)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai1, r

i
a1
), . . . (aiu, r

i
au)
)
:

2 · cak = Encpk(2 · ak, 2 · rak) and
‖2rak‖ ≤ Nnu · 2seczk+1 where

cak =
∑
i

ciak and rak =
∑
i

riak

}
(5.7)

Before we describe the protocol, we reiterate some key notation. The normalized
norm of randomness rm by ‖rm‖ = max{‖u‖∞ , ρ−1 · ‖e0‖∞ , ρ−1 · ‖e1‖∞}. For B > 0,
we call c a B-ciphertext if there exists m ∈ Rp and rm = (u, e0, e1) ∈ R3 such that
‖rm‖ ≤ B and c = Encpk(m, rm). We also use UB to denote a uniform distribution
over the set of triples r = (u, e0, e1) ∈ R3 such that ‖r‖ ≤ B. We set ρ = 20
following [10] to ensure the randomness r from an honest party satisfies ‖r‖ ≤ 1
with overwhelming probability. Furthermore, we also use the following distributions
(specifically the third) in the description of the protocol:

(A) ZO(0.5, k): This distribution generates a vector of size k with elements {xi}ki=1

chosen from {−1, 0,+1} such that the Pr(xi = −1) = 0.25,Pr(xi = +1) = 0.25,
and Pr(xi = 0) = 0.5 for all i ∈ [k].

(B) DN (σ2, k): This distribution generates a vector of size k with elements drawn
according to an approximation to the discrete Gaussian distribution with vari-
ance σ2.
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(C) RG(0.5, σ2, k): This distribution generates a triple of elements (u, e0, e1) where
u← ZO(0.5, k) and e0, e1 ← DN (σ2, k).

Improvements compared to prior work. In our protocol, the hiding on the mes-
sage (zil ) is information-theoretic (as opposed to statistical hiding in TopGear [10])
and hence does not need any check during the verification phase. This is due choosing
p | q in underlying BFV scheme. In addition, the ZKPoPK in [10] sends the polyno-
mials zil and rizl as elements in Rq, which is more than necessary since q is typically
large but these polynomials are supposed to have bounded norm. We can reduce this
cost by sending zil and rizl in bounded size (since zil ∈ U(Rp) and all the coefficients
of rizl should be bounded by u · 2seczk or ρ · u · 2seczk). In this way, we can also omit the
check on size of rzl in Step 3 of Verify phase.

Note that the “slack” in the ZKP provides looser bounds on the norms of values as
well as multiplied the values themselves by a factor of 2. This is a consequence of the
ZKP. Figure 5.1 shows how to account for this by modifying the preprocessing protocol
to takes these slacks into consideration. The above describes the ZKP protocol. We
define the security of the ZKPoPK similar to prior work [10] and present it below for
completeness.

Theorem 5.4. The n-party ZKPoPK-protocol defined by ΠPoPK satisfies the following
three properties:

(A) Correctness: If all parties Pi, with inputs sampled using the Sampling al-
gorithm (in ΠPoPK, Figure 5.3), follow the protocol honestly, then an honest
verifier will accept with probability one.

(B) Soundness: Let A = (A1,A2,A3) be a tuple of PPT algorithms and let ϵ ∈
[0, 1). Consider the following game:

(1a) A1 takes no input and outputs I ⊂ [n], {xi}i∈I and stateA1.
(1b) Choose (xj, wj)← Sampling(j) for each Pj, j /∈ I.
(1c) Compute (commj, statej)← Commit(xj, wj) for j /∈ I.
(2a) A2 on input stateA1 , {xj, commj}j /∈I output stateA2 , {commi}i∈I .
(3a) Choose a uniformly random w and compute respj ← Response(statej, w)

for j /∈ I.
(4a) A3 on input stateA2 , w, {respj}j /∈I outputs {respi}i∈I .
(4b) A wins the game if Verify({commi, respi}i∈[n], w) = True.

Suppose A wins the game with probability δ > ϵ. Then there exists a PPT algo-
rithm Extract which for any fixed output of A1, honestly generated inputs given
by {xj, wj, commj, statej}j /∈I , and black-box access to A2,A3 outputs {wi}i∈I
such that Ru,2

PoPK (Eq. 5.7) holds in at most f(secs)/(δ − ϵ) steps, where f(·) is
a positive polynomial and ϵ = 2−secs (secs is the soundness security parameter).

(C) Honest-verifier zero knowledge: There exists a PPT algorithm SI indexed
by a set I ⊂ [n], which takes as input an element in the language given by relation
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ΠPoPK

Proof of Plaintext Knowledge (PoPK): This protocol is run between n parties – each
acting as a prover and verifier simultaneously. The protocol flow is a standard three-
move structure (commitment, challenge, and response) called Σ-protocol with a single
challenge produced using an ideal functionality FRand. Let u, v be two proof parameters,
Flag ∈ {Diag,⊥}. We use i to denote party index and k, l for variables iterating across
ciphertexts (k ∈ [u], l ∈ [v]). Let n denote the number of parties and N denote the
degree of the cyclotimic polynomial used for HE. Ensure that v ≥ (secs+2)/ log2(2N+1).

Sampling (Sampling phase)

(A) On input i ∈ [n], if Flag =⊥ sample aik ← U(Rp) for each k ∈ [u]. If Flag = Diag,
sample aik as a random diagonal element in U(Rp) for each k ∈ [u].

(B) Generate riak ←RG(0.5, σ
2, N).

(C) Compute ciphertexts ciak = Encpk(aik, r
i
ak
).

(D) Define vectors c⃗a = (cia1 , . . . , c
i
au), a⃗i = (ai1, . . . a

i
u) and r⃗ia = (ria1 , . . . r

i
au). Output

(xi, wi) = (⃗cia, (⃗a
i, r⃗ia)).

Commit (Commitment phase)

(A) Party Pi generates v ciphertexts ciyl = Encpk(yil , r
i
yl
) where l ∈ [v], yil ← U(Rp),

and riyl ← Uu·2seczk .
(B) Party Pi broadcasts a commitment commi ← {ciyl}∀l.

Challenge (Challenge phase)

(A) Parties call FRand to obtain a v × u challenge matrix w with random entries. If
Flag =⊥, entries of w come from {±Xj}0≤j<N ∪ {0}. If Flag = Diag, entries of w
come from {0, 1}.

Response (Response phase)

(A) Party Pi computes zil = yil + (w · a⃗i)l and rizl = riyl + (w · r⃗ia)l.
(B) Party Pi sets respi ← {zil , rizl}∀l and broadcasts respi.

Verify (Verification phase)
Each party then performs the following computations and verifications:

(A) Compute cizl = Encpk(zil , r
i
zl
).

(B) Compute c⃗a ←
∑

i c⃗
i
a, cyl ←

∑
i c

i
yl
, czl ←

∑
i c

i
zl
, zl ←

∑
i z

i
l , and rzl ←

∑
i r

i
zl
.

(C) Verify czl = cyl + (w · c⃗a)l and ‖rzl‖ ≤ n · u · 2seczk .
(D) If Flag = Diag then additionally verify that zl is a diagonal plaintext element.
(E) If all checks pass, parties accept otherwise they reject.

Figure 5.3: Protocol for zero-knowledge proof of plaintext knowledge.
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Ru,Honest
PoPK (Eq. 5.6) and a challenge w, and outputs tuples {commi, respi}i∈I such

that this output is statistically indistinguishable from a valid execution of the
protocol (the statistical indistinguishability parameter is denoted by seczk).

Next, we present the proof of Theorem 5.4.

5.3 Theoretical Analysis
In this section, we prove the security of the ZKPoPK. We split the proof into the 3
components – completeness, soundness, and the zero-knowledge property.

5.3.1 ZKPoPK: Security Proof
Completeness

For completeness, a true statement must be verified correctly when both the prover
and verifier are honest. In this case, completeness follows directly from the con-
struction as the relation czl = cyl + (w · c⃗a)l is linear in its arguments and works
component-wise as well as from the fact that the BFV encryption procedure is linear
in the message and the randomness. The noise bound (in Verify 3 of Figure 5.3) is
obtained by:

‖rzl‖ =

∥∥∥∥∥∑
i

rizl

∥∥∥∥∥ ≤∑
i

(∥∥riyl∥∥+ ∥∥(w · r⃗ia)l∥∥)
≤ nu · 2seczk

(5.8)

where the last equality holds with an overwhelming probability since ‖(w · r⃗ia)l‖ ≤ u
and riyl is a sample from Uu·2seczk .

Zero-Knowledge

To prove zero-knowledge, we need to show that for a true statement, the verifier learns
nothing more than the fact that the statement is true. This is done by showing that
the verifier (in this case all the parties), given access only to the statement to be proven
(cak = Encpk(ak, rak)) but no access to prover, can produce a transcript that is statisti-
cally indistinguishable from the real transcript, in this case, {ciak}, {c

i
yl
}, w, {zil}, {rizl}

where k ∈ [u], l ∈ [v], and i ∈ [n].
Assuming a set of corrupt parties A ⊂ [n], we simulate an accepting transcript for

the set of honest parties, i.e., Pi where i /∈ A by first choosing the challenge matrix
w. Once w is fixed, generate zil ← Rp and rizl ← Uu·2seczk for i /∈ A. Finally, compute
ciyl ← Encpk(z

i
l , r

i
zl
)−(w ·⃗cia)l. Next, we argue that each of {rizl}, {z

i
l}, and {ciyl} has the

same distribution in the real and simulated transcripts (w is straightforward and {ciak}
are in the proof statement). rizl has the same distribution in both the transcripts as
it is generated from the same distribution except for an additive factor which is from
an exponentially smaller distribution. The distributions of zil are uniformly random
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elements from Rp and hence are exactly the same. Finally, the distribution of ciyl is
a uniformly random u · 2seczk-ciphertext in both the real and simulated transcript as
(w · c⃗ia)l is a u-ciphertext.

Soundness

To prove knowledge soundness, we follow the techniques of [14, 10]. Informally, we
show that if there exists a prover P (as a function of the adversarial corruptions)
that can succeed with probability ϵ > 2−secs , then there exists a knowledge extractor
running in poly(secs) · ϵ−1 that can extract the witnesses {(aik, riak)}k∈[u]. We effec-
tively construct a polynomial time extractor Ek for each witness (aik, riak) and k ∈ [u]
(intuition provided in Figure 5.4). The extractor Ek, which acts as the verifier, given
access to such a prover P , performs the following steps:

(i) Send random challenges w to the prover P until it outputs an accepting tran-
script. Let us denote this accepting transcript by (zil , r

i
zl
). This runs in expected

time 1/ϵ.
(ii) Select a new random challenge w̃ identical to w except the k-th column. This

ensures that w−w̃ is a matrix with all zeros except in the k-th column, where the
entries are elements of R of the form a− b 6= 0 where a, b ∈ {0}∪ {±Xj}0≤j<N .

(iii) Send challenge matrices to the prover P until one of two things happen

(a) A successful transcript is generated with w̃.
(b) There are t = dsecs · ϵ−1e unsuccessful challenges.

(iv) The extractors aborts in case (iii)(b). In case (iii)(a), the extractor outputs the
two successful transcripts along with the challenges.

If the extractor outputs two transcripts successfully, then we can use the resulting two
conversations to compute the witness (aik, riak) efficiently. We describe this argument
next. However, it is important to note here that the soundness argument is not
complete until we show that (1) the above extractor runs in poly(secs)/ϵ time and (2)
aborts with low probability. We break down the proof into the above three steps.

Runtime. The runtime is easiest to argue and follows directly from the description
of the extractor.

Probability of aborting. To bound the failure probability of the extractor, we
follow the line of argument from [36]. Let wk denote the k-th column of the challenge
matrix w and w−k the rest of the challenge matrix, i.e., w except the k-th column. We
construct a binary matrixH such that each row corresponds to a choice of randomness
σ used by the prover P and a choice of challenge w−k and each column corresponds
to a choice of wk. The entry Hσ,w−k,wk

is 1 if the verifier accepts the transcripts for
this random choice σ and challenge w. When the extractor uses P as a blackbox
and submits a random challenge w, it is equivalent to probing an entry in the matrix
H. By rewinding the prover P , we can probe another entry in the matrix H in the

86



c
1
d1

. . . cnd1... . . . ...
c1dv . . . cndv

 =

 e1k

0⃗
... 0⃗
evk

×

c1a1 . . . cna1

... . . . ...

c1au . . . cnau


Figure 5.4: Visual aid to assist the exposition of the witness extraction. Here cidl

= cizl − c̃izl and
e = w − w̃ is a matrix with zeros everywhere except the k-th column.

same row (same internal randomness, i.e., w̃) and these two transcripts can be used
to extract the witness (aik, riak) efficiently.

Now, we look at the number of ones in each row of H. We note that each row
has (2N + 1)v entries (the size of the challenge space wk). A row is called heavy if it
contains at least (ϵ/2) × (2N + 1)v ones. A simple application of Markov inequality
implies that at least half of the ones are located in the heavy rows since ϵ is the ratio of
the number of ones to the size of entire matrix H. Setting v ≥ (secs+2)/ log2(2N+1),
we get at least (ϵ/2) · (2N + 1)v ≥ 2 ones in each of the heavy rows. Now, from the
description, it is clear that the extractor aborts in the following two cases:

(A) The first successful challenge is not in a heavy row.
(B) The first successful challenge is in a heavy row but we do not hit another one

in t = d4secs/ϵe tries.

The first probability as we just saw is ≤ 1/2. For second probability, each successful
attempt happens with probability ≥ ϵ/2− (2N + 1)−v > ϵ/4. Hence, the probability
of aborting from the second case is at most

(1− ϵ/4)t < exp (−t · ϵ/4) < 2−secs (5.9)

Adding these up, the probability that the extractor aborts is < 1/2 + 2−secs .

Witness extraction. The final piece of completing the soundness proof is the wit-
ness extraction and associated bounds. Given two accepting transcripts (w, {zil , rizl})
and (w̃, {z̃il , r̃izl}), we set cizl = Encpk(z

i
l , r

i
zl
) and c̃izl = Encpk(z̃

i
l , r̃

i
zl
). Let us consider

the matrix with entries cdl = czl − c̃zl and another matrix w− w̃ with 0’s everywhere
except the k-th column.

We can see that this set of linear constraints allows us to find the witness, one index
at a time. In particular, at least one of the elk 6= 0 and consequently, zil , rizl , z̃

i
l , and

r̃izl along with elk can be used to extract, respectively, the plaintext and randomness
aik and riak (which encrypts to Ci

k). The exact relations can be written as follows:

aik = e−1
lk · (z

i
l − z̃il )

riak = e−1
lk · (r

i
zl
− r̃izl)

(5.10)

Finally, to estimate the noise, we use the following result from [14]:
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Lemma 5.1. The quantity 2/(X i−Xj) for 0 ≤ i 6= j < N is a polynomial in R with
coefficients in {0,±1}.

As a consequence of the above, ‖2/(X i −Xj)‖∞ ≤ 1. We use this to bound the
norm of 2 · aik and 2 · riak from Eq. 5.10. In particular,∥∥2 · riak∥∥ ≤ N · ‖2/elk‖∞ ·

∥∥rizl − r̃izl∥∥ ≤ 2N · u · 2seczk . (5.11)

Therefore, 2 · ciak = Enc(2 · ak, 2 · riak) and ‖2 · rak‖ ≤ Nnu · 2seczk+1. This completes
the proof.

5.4 Experimental Evaluation
We present our experimental results for the applications of our protocols to private
matrix multiplication and neural network inference. We start with describing some
further optimizations. Then, we present noise growth estimates for the homomorphic
matrix multiplication algorithms, followed by our concrete parameter instantiation,
before proceeding to present our experimental results. The main results are presented
over 3 application scenarios (1) private matrix multiplications (2) private nearest
neighbor search and (3) private inference of ResNet-50.

5.4.1 Evaluation Set-up and Parameter Estimation
Next, we describe the optimization used for the homomorphic matrix multiplication,
the general noise estimation bounds, and lastly, describe a choice of parameters that
satisfy all these constraints which we use in the following evaluations.

Further Optimizations. On top of the baseline implementation, we apply the
following optimization techniques for the homomorphic matrix multiplication.

• A lazy key-switching technique can be applied to the last multiplication step
of Eq. (5.3). To be precise, we compute tensor products between ϕk(cA) and
ψk(cB) and aggregate all the resulting ciphertexts. In the end, the key-switching
operation is performed only once to relinearize the output ciphertext.

• The hoisting technique of [57] can be applied to our case to reduce the com-
plexity of rotations in the generation of ϕk ◦ σ(A) and ψk ◦ τ(B). Since there
are many rotations done on the same input ciphertext, one can compute the
common part of computation that only depend on the input, and therefore it
can be significantly faster than applying each rotation separately.

• As described in [63], homomorphic matrix multiplication can be extended to
matrices of an arbitrary size. Given the packing structure of BFV (presented
in Section 2.3.1, 5.1), the two rows of BFV encoding operate identically and
without interference, so it is easy to pack two matrices in a single ciphertext.
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Additionally, we can use the interlacing technique of [63] to encrypt multiple
matrices in each plaintext row and carry out matrix operations in parallel,
thereby amortizing it over many operations. On the other hand, when an
input matrix is too large to be encrypted in a single ciphertext, we split it
into block-size matrices and encrypt them separately in different ciphertexts. A
large matrix operation can be expressed as a composition of several block-size
matrix operations. Instead of computing block-wise multiplications separately,
we precompute and store the permutations of block matrices not to repeat the
same computation in individual products.

Noise Estimation of Homomorphic Matrix Multiplication. In order to op-
timally choose the parameters of the HE scheme, we perform a noise analysis of our
algorithms. The noise bounds of ciphertexts are updated during the computation
with respect to the following analysis.

• Encryption: Suppose that c = Encpk(m, rm) for a message m and randomness
rm = (u, e0, e1) such that ‖rm‖ ≤ B. Then, we have

c[0] + c[1] · s = ∆ ·m+ (u · e+ e0 + e1 · s) (mod q)

and the encryption noise eenc = u · e + e0 + e1 · s is bounded by ‖eenc‖∞ ≤
Bρ(1 + 2N). If a ciphertext is honestly generated, then we derive the bound
Bclean = ρ(1 + 2N) since ‖rm‖ ≤ 1. However, our ZKPoPK only guarantees
that 2cm = Encpk(2m, 2rm) for some ‖2rm‖ ≤ Nnu · 2seczk+1 and so the noise of
2cm is bounded by Bdishonest

clean = Nnu · 2seczk+1 · ρ(1 + 2N).

• Plaintext-ciphertext product: The noise of resulting ciphertext is the product
of an initial noise e ∈ R and a plaintext p such that ‖p‖∞ ≤ p. Hence a new
noise bound is ‖p · e‖∞ ≤ N · ‖p‖∞ ‖e‖∞ ≤ Np · ‖e‖∞.

• Rotation: In our protocols, all ciphertexts are generated with PoPKs which
provide an upper bound Nnu · 2seczk of the size of encryption randomness r =
(u, e0, e1). Hence the noise of a ciphertext u · (pk[0] + pk[1] · s) + (e0 + e1 · s)
also has an exponential bound in seczk. Since we introduce a special modulus
to use the modulus-raising technique in our key-switching algorithm, the noise
from homomorphic rotation is Õ(N) which is negligible compared to the noise
parameter of ciphertexts. Hence the homomorphic rotation does not change
the upper bound of noise.

• Multiplication: Given two ciphertexts c1, c2, we have ci[0] + ci[1] · s = qIi +∆ ·
mi + ei over R for some Ii ∈ R, plaintext mi ∈ Rp and noise ei ∈ R. Their
product scaled by ∆ is ∆ ·m1m2+e

′ modulo q for some noise e′ ≈ p(I1e2+I2e1)
(other terms are exponentially small compared to this dominating one). We
note that ‖Ii‖∞ ≤ N and so ‖e′‖∞ ≤ 2N2p · max{‖e1‖∞ , ‖e2‖∞}. In certain
cases, multiplication is followed by a key-switching procedure, which introduces
a negligible noise, similar to the case of rotation.
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• Matrix product: The permutation ψk(·) is not simply a rotation but the com-
position of two maskings and rotations, where a masking refers a specific scalar
multiplication which zeros out some values in plaintext slots. It increases
the noise bound of input ciphertext by a factor of Np. To sum up, for in-
put ciphertexts cA, cB of noise eA and eB, respectively, the noise of each term
σk(cA)⊠ τ k(cB) is bounded by 2N2p · 2Np ·max{‖eA‖∞ , ‖eB‖∞} and their sum
cA ⊛ cB has a noise with the upper bound 4dN3p2 ·max{‖eA‖∞ , ‖eB‖∞}.

Concrete Parameter Choices. In our experiments, we set seczk = 128, secdd =
80, and log p = 128. For the BFV scheme, we chose N = 215, log q = 720 and
the standard deviation σ = 8/

√
2π, same as in [10] and [66]. This parameter set

enjoys computational security of more than 128 bits [26]. In the ZKPoPK protocol
(Figure 5.3), we use u = 2v and similar to TopGear [10] set v = 16. For notational
convenience, we let |Rm| denote the set of polynomials of degree N with non-negative
integer coefficients bounded above by m, and let |Rm| denote the number of bits
needed to represent an element of Rm. Hence |Rm| = N logm.

5.4.2 Application I: Private Matrix Multiplication
The first application of our protocol we consider is that of private matrix multi-
plication. We split the study of our techniques for this application into multiple
components (1) communication overhead (2) comparison with prior art (3) concrete
efficiency and (4) theoretical complexity.

Communcation overhead. We calculate the communication cost of our private
matrix multiplication protocol for 128×128 matrices, noting that the communication
cost scales linearly with the number of entries in the matrix7. In the online phase, the
parties open two matrices (say of size d × d), so the communication is 2d2 log p bits
per matrix multiplication. The dominating cost occurs in the offline phase, which we
break down further into three parts: the ciphertexts, the ZKPoPK procedure, and
the distributed decryption (i.e. DDec) procedure. Each ciphertext takes 2|Rq| bits;
the ZKPoPK can be used to prove u ciphertexts while it sends v = u/2 additional
ciphertexts together with v “openings.” Here, as seen in Figure 5.3, each opening
consists of one element in in Rp, one element in Ru·2seczk and two elements in Rρ·u·2seczk ;
finally, the protocol requires 4 invocations to DDec, which requires each party to send
4|Rq| bits.

Note that one invocation of the protocol generates two matrix triples, due to the
fact that we optimally use the 215 = 1282 · 2 slots in our HE scheme. Hence, the

7Note that we did not include the cost of one-time set-up, which consists of generating all the
required keys keys for the HE scheme and generating and proving the encryptions of shares of the
MAC key.
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amortized communication cost sent by each party in the offline phase is

1

2

(
6|Rq|+

1

u
v(2|Rq|+ u · log2N + (1 + 2 log2 ρ)|Ru·2seczk |+ |Rp|)

)
≈ 1

2

(
6|Rq|+

1

u
v(2|Rq|+ u · log2N + 9.64|Ru·2seczk |+ |Rp|)

) (5.12)

With our parameter settings, this amounts to around 12.46MB of data sent by each
party.

Comparison with LowGear [66]. We compare our communication cost with the
preprocessing required by the SPDZ protocol to multiply 128 × 128 matrices: the
LowGear protocol takes 15 kbits per triple, and we assume that we need d2.8 triples.
Setting d = 128, this amounts to a 1.54GB communication cost of sent by each
party. So we reduced the communication by roughly two orders of magnitude for
128-dimensional matrix multiplication.

Concrete efficiency. We now present the performance of our secure matrix multi-
plication protocol over various matrix sizes. Our source code was developed in C++
with Microsoft SEAL version 3.3 [81]. All the experiments were done on a machine
with an Intel Xeon Platinum 8168 at 2.7 GHz featuring 16 cores. The compiler was
GNU version 7.4.0 (-O3), and we used GMP version 6.1.2 and NTL version 11.3.3.

Table 5.1 shows results for microbenchmarks on homomorphic matrix computation
for a two party scenario and various components of the matrix triple generation
process. We split the input matrices into 128×128 matrix blocks. We found that key
generation takes about 83 seconds and it takes about 191 milliseconds to encrypt two
input square matrices of size 128 as a single ciphertext, yielding an amortized rate of
96 milliseconds per matrix. The second column gives the amortized encryption timing
per matrix. We note that a one time set-up cost is to prepare appropriate masking
plaintext polynomials that will be used for performing permutation ψk(·), which takes
around 14.5 seconds. In the third and fourth columns labeled “Permutation”, we give
timings per matrix for generating the encrypted permutations of blocks of A and B,
respectively. The fifth column labeled “Block comp.” gives the amortized time taken
for additions and multiplications on block matrices.

Theoretical complexity. Suppose the input matrix of size n is partitioned into
k2 blocks of size d (we have d = 128 in our experiments). Then the encryption cost
is O(k2). On the other hand, the computational costs of generating permutations of
block matrices and performing block computation are O(k2) and O(k3), respectively.
These trends can be seen in Table 5.1.

In Table 5.2 we document the experimental latency associated with the communi-
cation cost of our protocol. In the LAN setting, two parties are deployed in the same
geographic network (N. Virginia on Amazon EC2, bandwidth about 5Gbps, ping time
20 ms). In the WAN setting, they were deployed in different geographic settings (N.
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Table 5.1: Microbenchmarks: All timings measured in seconds; 16 threads were used for columns
labeled “Permutation” and “Block comp”, and a single thread was used for other operations; the

ZkPoPK time is amortized over u = 32 ciphertexts.

Matrix Encrypt Permutation Block ZkPoPK AddMacs DDec
size time of A of B comp. Prover Verifier time time

128× 128 0.10 1.8 0.9 1.4 0.047 0.09 0.6 1
256× 256 0.38 5.6 2.3 10.1 0.188 0.35 2.4 4
384× 384 0.86 12.8 4.9 34.0 0.79 0.81 5.4 9
512× 512 1.52 21.8 8.0 79.6 1.41 1.44 9.6 16
1024× 1024 6.08 79.6 32.9 648 3 5.63 38.4 64

Virginia and N. California on Amazon EC2, bandwidth about 320 Mbps, ping time
70 ms). SPDZ uses a 25 Gbps link for LAN and 50 Mbps for WAN (WAN numbers
are extrapolated from Overdrive [EC:KelPasRot18]).

Finally, Table 5.3 provides total time estimates on matrix multiplications in the
LAN and WAN settings respectively. Total-16, SPDZ-16 refer to timings using 16
threads and Total-1, SPDZ-1 refer to single-threaded implementations. As can be
seen from the table, our approach is between 16×-40× faster than prior art and
improves with larger matrix sizes.

5.4.3 Application II: Private Nearest Neighbors
The next application we explore is that of private nearest neighbor search (NNS).
In the batched version of the private NNS problem, one party holds a dataset X
of n vectors in d-dimensional Euclidean space, and the other party holds several d-
dimensional query vectors q1, q2, . . . , qb. The task is to compute securely for each
query k nearest data vectors with respect to the Euclidean distance. There is a large
body of work on this topic (see [28] for an overview). However, we are not aware of any
previous work that solves the problem in the dishonest majority malicious adversarial
model. Most of the secure NNS algorithms first (securely) compute secret shares
of distances between every query vector and every dataset vector and then perform
top-k selection. Distance computation can easily be reduced to matrix multiplication
for matrices of size n×d and d× b and thus in the dishonest majority security model,
we can use our protocol to perform distance computation.

As an example, we will consider the largest NNS instance that was solved securely
to date [28]: the subset of the Deep1B dataset [8] with n = 107, d = 96. If we
would like to compute distances between b = 128 queries and the whole dataset, we
would need to multiply 78125 pairs of square matrices of size 128. Since each matrix
multiplication requires 12.46 MB of communication per party in the offline phase, the
overall distance computation requires 7.6 GB per party per query. On 16 threads, our
protocols roughly require 30 minutes per query. LowGear equipped with the Strassen
algorithm, on the other hand, requires at least 500 million Beavers triples per query.
Running on 16 threads, this amounts to at least 80 minutes, and takes more than 1
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Table 5.2: Communication overhead accounting for the round complexity and amount of data sent
between parties.

Matrix Communication Time
Sizes LAN WAN

128× 128 0.010 sec 2.05 sec
256× 256 0.039 sec 8.19 sec
384× 384 0.091 sec 18.44 sec
512× 512 0.161 sec 32.78 sec
1024× 1024 0.647 sec 131.15 sec

Table 5.3: Benchmarks for private matrix multiplication over various sizes. Note that the timings
for SPDZ are obtained by measuring the throughput of triple generation.

Matrix sizes Total-16 Total-1 SPDZ-16 SPDZ-1time time

LAN

128× 128 5.9 sec 36.1 sec 8.41 sec 128 sec
256× 256 25.5 sec 214.5 sec 58.9 sec 900 sec
384× 384 68.3 sec 653.6 sec 3 min 46.8 min
512× 512 2.3 min 24.5 min 6.87 min 105 min
1024× 1024 14.5 min 173 min 52.02 min 735 min

WAN

128× 128 7.95 sec 38.15 sec 1.61 min 24.6 min
256× 256 33.5 sec 222.6 sec 11.32 min 2.88 hours
384× 384 68.34 sec 672.0 sec 34.6 min 9 hours
512× 512 2.35 min 25.0 min 1.32 hours 20.2 hours
1024× 1024 16.51 min 175.1 min 10 hours 5.88 days

TB of communication. Note that these performances numbers are obtained from our
microbenchmarks rather than from running actual experiments.

5.4.4 Application III: Private Inference of ResNet-50
We can use our protocol to perform convolutions of a neural network securely. Here we
discuss it in the context of the ResNet-50 network [59]. Note that for this discussion
we ignore ReLUs, batch normalization, and pooling layers and focus on convolutions
only.

All the convolutions in the ResNet-50 network require 3298multiplications of pairs
of 128×128 matrices. We will now follow the benchmarks from Table 5.3 to estimate
the preprocessing cost of computing these products securely. Since each multiplication
requires 12.46 MB of communication per party, the total communication would be 41
GB per party. Estimating the running time for preprocessing phase on 16 threads, we
obtain 7.4 hours per query. On the other hand, doing multiplications using Strassen
with LowGear would require at least 2.7 billion Beavers triples, so when run with 16
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Table 5.4: Two-party costs for ResNet-50 without the batch norm layer over Zp.

Protocol Communication (GB)
Preprocessing Online

Conv [66] 5,092 }
170× 86.91 }

160×Conv (ours) 30 0.54
Conv + RELUs [66] 9,225 }

2.2× 105.2 }
5.6×Conv + RELUs (ours) 4,133 18.83

triple generation threads, this amounts to at least 7.6 hours of running time and 5
TB of communication.

Adding RELUs into the costs. ResNet-50 architecture requires a total of
9,608,704 ReLUs. To compute a RELU in MPC, one needs to have access to a
protocol for random shared bit generation JbK. Using existing techniques, the cost of
such a RELU protocol is two-fold: in terms of preprocessing, it requires 122 triples
and 105 random bits8 whereas the online cost of RELU is 8 rounds of communication
and 1 extra openings. A more careful analysis of SCALE/MP-SPDZ implementation
of RELU reveals that there are exactly 119 field elements sent per party in the online
phase.

On top of the RELUs, each multiplication involving a Beaver triple requires two
field elements opened per party hence some extra 256 bits. In Table 5.4 we summarize
the estimated costs using LowGear and SPDZ-online versus our implementation of the
online phase which uses convolution triples. Note that our current implementation
does not support RELUs so we estimate that part. In Table 5.4 the “Conv” keyword
denotes the evaluation of the convolution layers only. As can be seen from the table,
our approach brings down the online cost of the convolution layers by at least two
orders of magnitude compared with classic SPDZ Beaver triples.

5.5 Summary
In this work, we reduced the overhead of computing linear operations in the SPDZ
framework for dishonest-majority MPC. First, we demonstrate a novel way of gen-
erating pre-processing data for bilinear operations such as matrix multiplication and
convolutions in the SPDZ framework, where the communication cost does not de-
pend on the number of multiplications but only depends on the input and output
size. We achieved this by leveraging state-of-the-art homomorphic encryption algo-
rithms for linear operations into SPDZ. We generalized the notion of authenticated
Beaver triples to arbitrary bilinear operations and adapted the state-of-the-art homo-
morphic matrix multiplication algorithm to generate authenticated “matrix triples”

8This is assuming p ≈ 2128 and a comparison with statistical security secs = 40 - see SCALE-
MAMBA documentation for more details [3].

94



and “convolution triples.” We also removed the sacrifice stage of SPDZ via increasing
the parameters of the HE scheme to allow one more multiplication, and optimized the
SPDZ zero-knowledge proof via the usage of BFV homomorphic encryption scheme,
which further improved performance. Our protocol requires O(n2) total communica-
tion to multiply two n × n matrices, compared to O(n2.8) from SPDZ. In terms of
concrete efficiency, to securely multiply two 128 × 128 matrices, our protocol is at
least one order of magnitude faster in terms of latency and as much as two orders
of magnitude more communication efficient compared to prior art. Furthermore, this
improvement only increases as the dimensions of the matrices increase. We believe
our protocols improves the state-of-the-art in dishonest-majority secure computation,
particularly in tasks that require a large number of linear operations such as private
machine learning inference and training.
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Chapter 6

Conclusion

Motivated by the trend of reducing the overhead of privacy-preserving systems, specif-
ically those targeted towards machine learning, we develop techniques that improve
the performance of critical building blocks of such applications. A key insight is a
hybrid approach towards designing such systems, particularly cross-layer design and
combination of MPC and HE.

Using a novel cross-layer design approach, we propose a set of highly efficient
protocols for commonly used functions in NNs. This unique approach enables joint
optimization over the secret sharing layer as well as the function computation layer.
As a consequence, we can jointly optimize and design optimally efficient protocols in
this integrated architecture. We propose a framework called SecureNN based on
these insights. Furthermore, since these protocols rely on simple modular arithmetic,
this approach also provides concrete efficiency when implemented.

Though highly efficient in practice, SecureNN operates in a weaker semi-honest
security model. In Falcon, we have seen how to improve upon the adversarial
model and design protocols that enjoy active security using a hybrid protocol design.
We build upon the redundancy of a replicated secret sharing and propose a number
of theoretical improvements that reduce both the communication and computation
complexity of protocols commonly used in NNs. Furthermore, the improved support
for various types of layers in this work enhances the applicability of privacy-preserving
techniques to machine learning.

Finally, we further strengthen the adversarial model from honest majority to a
dishonest majority and design protocols against such an adversary. Matrix multipli-
cation, a critical component of ML is performance-intensive in such an adversarial
setting. In Ponytail, we have shown how to reduce the communication complex-
ity of matrix multiplication from O(n3) to O(n2). Furthermore, implementations
demonstrate that even for modest matrix sizes of 100× 100, our approach of using a
combination of FHE and MPC outperforms all prior approaches.

Collectively, these techniques provide a new foundation for the design of privacy-
preserving algorithms while improving both the asymptotic and concrete efficiency
of such systems. Overall, these protocols provide orders of magnitude performance
improvements for commonly used functions in machine learning, thereby significantly
reducing the gap between privacy-preserving and plaintext computation.
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6.1 Future Work
Moving forward, the vision of this dissertation can be more broadly stated as:

Design and development of efficient protocols for adoption of privacy-
preserving technologies.

I envision a future in which the digital infrastructure enables privacy-conscious
collection and handling of user data, thus enabling exciting new applications while
simultaneously complying with changing digital and social norms. There is still work
to be done and this broad view leads to a number of other research directions, a few
of which I describe below:

Dishonest majority adversarial model. While SecureNN and Falcon
demonstrated purely arithmetic secret sharing-based protocols for non-linear function
computation, it is an open line of research to improve these function computations
in the dishonest majority adversarial model (one similar to Ponytail). The in-
sights from Chapters 3 and 4 can be distilled and combined with advances such as
edaBits [46] to provide efficient comparison operations.

Expanding ML base. While CNNs form an important class of NN algorithms,
they are by no means the only class of NN algorithms. Extending privacy-preserving
ML techniques to other network architectures such as RNNs [59], LSTMs [60],
GANs [55], Reinforcement Learning [105], etc., poses important new questions. Fur-
thermore, to truly enable privacy-preserving ML, a number of open problems around
ML must be solved. These include hyper-parameter setting, support for optimizers,
support for GPUs, and a sufficiently wide range of supported functionalities.

Improving usability. Finally, privacy-preserving techniques are currently re-
stricted to a few expert programmers and there is work to be done to increase
adoption of these technologies by ML experts. This will require easy-to-use libraries
that abstract the complexities of the underlying cryptography from the system user.
Crypten [34] is one such effort with limited support for protocols and functionalities.
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Appendix A

SecureNN: Supplementary
Material

A.1 Arithmetic Operations on Shared Decimal
Numbers

In order for NN algorithms to be compatible with cryptographic applications, they
must typically be encoded into integer form (most NN algorithms work over floating-
point numbers). Now, decimal arithmetic must be performed over these values in
an integer ring which requires careful detail. We follow [85] and describe details
below. We use fixed-point arithmetic to perform all computations. In other words,
all numbers are represented as integers in the native C++ datatype uint64_t. We use
a precision of lD = 13 bits for representing numbers. For instance, an integer 215

in this encoding corresponds to the float 4 and an integer 264 − 213 corresponds to a
float −1. Since we use unsigned integers for encoding, ReLU(·) compares its argument
with 263. Such an encoding is gaining popularity in the systems community with the
introduction of fixed-point data types [48].

To perform decimal arithmetic in an integer ring, we use the same solution as
is used in [85]. Addition of two fixed-point decimal numbers is straightforward. To
perform multiplication, we multiply the two decimal numbers and truncate the last
lD bits of the product. Theorem 1 in [85] shows that this truncation technique also
works over shared secrets (2-out-of-2 shares), i.e., the two parties can simply truncate
their shares locally preserving correctness with an error of at most 1 bit with high
probability. Denoting an arithmetic shift by ΠAS(a, α), truncation of shares, i.e.,
dividing shares by a power of 2 is described in Algorithm 18. We refer the reader to
[85] for further details.

A.2 Security Proofs
Here, we provide proofs of semi-honest simulation based security of our protocols. If
a protocol invokes another sub-protocol for a functionality F , we prove the security
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Algorithm 18 Truncate ΠTruncate({P0, P1}):
Input: P0 & P1 hold an positive integer α and 〈X〉L0 & 〈X〉L1 resp.
Output: P0 gets 〈X/2α〉L0 and P1 gets 〈X/2α〉L1 .
1: P0 computes ΠAS(〈X〉L0 , α).
2: P1 computes −ΠAS(−〈X〉L1 , α).

by replacing the sub-protocol invocation with the corresponding functionality call.
This refers to the F -hybrid model.

Private Compare
Lemma A.1. Protocol ΠPC({P0, P1}, P2) in Algorithm 3 securely realizes FPC when
p > ℓ+ 2.

Proof. We first prove correctness of our protocol, i.e., β′ = β ⊕ (x > r). Define x[i]
as x[i] := Reconstp(〈x[i]〉p0, 〈x[i]〉p1) ∈ {0, 1} for all i ∈ [ℓ]. We treat x and r as ℓ bit
integers and x > r tells if x is greater1 than r. Below, we do a case analysis on the
value of β.
Case β = 0. For correctness, we require β′ = (x > r). For each i ∈ [ℓ], define
wi = Reconstp(〈wi〉p0, 〈wi〉p1). Note that w[i] = x[i]+r[i]−2r[i]x[i] = x[i]⊕r[i]. For each
i ∈ [ℓ], define ci = Reconstp(〈ci〉p0, 〈ci〉p1). Note that c[i] = r[i]− x[i] + 1 +

∑ℓ
k=i+1wk.

Let i∗ be such that for all i > i∗, x[i] = r[i] and x[i∗] 6= r[i∗]. We claim that the
following holds:

• For all i > i∗, c[i] = 1. This is because both r[i]− x[i] and
∑ℓ

k=i+1wk are 0.

• For i = i∗, if x[i] = 1, c[i] = 0, else c[i] = 2.

• For i < i∗, c[i] > 1. This is because r[i]−x[i] is either 1 or −1 and
∑ℓ

k=i+1wk >
1. For this step, we require that there is no wrap-around modulo p, which is
guaranteed by p > ℓ+ 2.

This proves that x > r iff there exists a i ∈ [ℓ] such that c[i] = 0. Finally, the last
step of multiplying with random non-zero si and permuting all the sici preserves this
characteristic. This condition is exactly what P2 checks.
Case β = 1. For correctness, we require β′ = 1 ⊕ (x > r) = (x ≤ r). The last
expression is equivalent to x < (r+1) when r 6= 2ℓ− 1 and otherwise x ≤ r is always
true. Note that t = r + 1. Now, similar to the above logic, we compute t > x when
r 6= 2ℓ − 1. This condition is easy to check since r is known to both P0 and P1.
When r = 2ℓ − 1, we know that β′ = 1. Also, β′ = 1 iff there exists a unique i such
that di is 0. Hence, the parties create a vector starting with 1 followed by ℓ−1 zeroes.
Scaling by si and permutation creates a uniform vector with exactly one 0.

Now we prove security of our protocol. First note that P0 and P1 receive no
messages in the protocol and hence, our protocol is trivially secure against corruption

1x > r iff the leftmost bit where x[i] 6= r[i], x[i] = 1.
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of P0 or P1. Now, we have to simulate the messages seen by P2 given P2’s output,
namely β′. To do this, if β′ = 0, pick di

$←− Z∗
p, for all i ∈ [ℓ]. If β′ = 1, then pick an

i∗
$←− [ℓ], set di∗ = 0 with all other di

$←− Z∗
p. Now, compute (〈di〉p0, 〈di〉

p
1)← Sharep(di)

and send 〈di〉pj for all i ∈ [ℓ], j ∈ {0, 1} as the message from Pj to P2. This completes
the simulation. To see that the simulation is perfect, observe that whether or not
∃i∗, with di∗ = 0 depends only on β′. Additionally, when β′ = 1, the index i∗ where
di∗ = 0 is uniformly random in [ℓ] due to the random permutation π. Finally, the
non-zero di values are uniform over Z∗

p since the si values are random in Z∗
p.

Compute MSB
Lemma A.2. Protocol ΠMSB({P0, P1}, P2) in Algorithm 5 securely realizes FMSB in
the (FPC,FMATMUL)-hybrid model.

Proof. First, we prove correctness of our protocol, i.e., α := ReconstL(〈α〉L0 , 〈α〉L1 ) =
MSB(a). As already mentioned, over an odd ring, the MSB computation can be
reduced to LSB computation. More precisely, over an odd ring, MSB(a) = LSB(y),
where y = 2a. Hence, it suffices to compute LSB(2a).

In the protocol, r = y + x(modL − 1). Hence, LSB(y) = y[0] = r[0] ⊕ x[0] ⊕
wrap(y, x, L − 1). Next, we note that wrap(y, x, L − 1) = (x > r). First, P0, P1, P2

compute x > r as follows. They invoke ΠPC and its correctness ensures that P2 learns
β′ = β ⊕ (x > r). Next, P2 secret shares β′ to P0, P1. Note that γ = β′ + β − 2ββ′ =
β ⊕ β′ = (x > r) = wrap(y, x, L − 1). Next, similarly, δ = r[0] ⊕ x[0]. Then, θ = γδ
and α = γ + δ − 2θ = γ ⊕ δ = LSB(y) = MSB(a).

Next, we prove security of our protocol. Parties P0 and P1 learn the following
information: 2a+x (from Step 3), 〈r〉L−1

j , {〈x[i]〉pj}i, 〈x[0]〉Bj (Step 1) and 〈β′〉Bj (Step
5). However, these are all fresh shares of these values and hence can be perfectly
simulated by sending random fresh share of 0. Finally, Pj outputs a fresh share of
MSB(a) as the share is randomized with uj. The only information that P2 learns is
bit β′. However, β′ = β ⊕ (r > c), where β is a random bit unknown to P2. Hence,
the distribution of β′ is uniformly random from P2’s view and hence the information
learned by P2 can be perfectly simulated.

Derivative of ReLU
Lemma A.3. Protocol ΠDRELU({P0, P1}, P2) in Algorithm 6 securely realizes FDReLU
in the (FSC,FMSB)-hybrid model for all a ∈ [0, 2k]∪ [2ℓ − 2k, 2ℓ − 1], where k < ℓ− 1.

Proof. First, we prove the correctness of our protocol when a ∈ [0, 2k)∪(2ℓ−2k, 2ℓ−1],
where k < ℓ − 1, i.e., γ := ReconstL(〈γ〉L0 , 〈γ〉L1 ) = ReLU′(a) = 1 ⊕ MSB(a), where
a is the value underlying the input shares. Note that when a belongs to the range
[0, 2k] ∪ [2ℓ − 2k, 2ℓ − 1], where k < ℓ − 1, MSB(a) = MSB(2a) = MSB(c). Also,
it holds that 2a 6= L − 1, and precondition of FSC is satisfied. From correctness of
FSC, y := ReconstL−1(〈y〉L−1

0 , 〈y〉L−1
1 ) = 2a. Next, from correctness of FMSB, α :=

ReconstL(〈α〉L0 , 〈α〉L1 ) = MSB(y) = MSB(2a). Finally, γ = 1 − α = 1 − MSB(a) as
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required. Also, note that 〈γ〉Lj are fresh shares of γ since both parties locally add
shares of 0 to randomize the shares.

For security, first see that P2 learns no information from the protocol (as both
FSC({P0, P1}, P2) and FMSB({P0, P1}, P2) provide outputs only to P0 and P1). Now,
Pj, j ∈ {0, 1} only learns a fresh share of 2a (over ZL−1) in Step 2 and a fresh share
of α = MSB(2a) in Step 3 and hence any information learned by either party can be
perfectly simulated through appropriate shares of 0. Finally, Pj outputs a fresh share
of ReLU′(a) as the respective shares are randomized by uj.

ReLU
Lemma A.4. Protocol ΠReLU({P0, P1}, P2) in Algorithm 7 securely realizes FReLU in
the (FDReLU,FMATMUL)-hybrid model.

Proof. First, we prove the correctness, i.e., c := ReconstL(〈c〉L0 , 〈c〉L1 ) = ReLU(a) =
ReLU′(a) ·a, where a is the value underlying the input shares. It follows from correct-
ness2 of FDReLU that α := ReconstL(〈α〉L0 , 〈α〉L1 ) = ReLU′(a). Now from the correctness
of FMATMUL it follows that c = α · a.

For security, see that P2 learns no information from the protocol (as both
FDReLU({P0, P1}, P2) and FMATMUL({P0, P1}, P2) provide outputs only to P0 and P1).
Now, Pj, j ∈ {0, 1} only learns a fresh share of α = ReLU′(a) in Step 1 and a fresh
share of αa (over ZL) in Step 2 and hence any information learned by either party
can be perfectly simulated through appropriate shares of 0. Finally, Pj outputs a
fresh share of ReLU(a) as the respective shares are randomized by uj.

Matrix Multiplication
Lemma A.5. Protocol ΠMatMul({P0, P1}, P2) in Algorithm 1 securely realizes
FMATMUL.

Proof. Let Zj be the output of party Pj. For correctness we need to prove that
ReconstL(Z0, Z1) = X·Y . We calculate Z0+Z1 =

(
〈X〉L0 · F + E · 〈Y 〉L0 + 〈C〉L0 + U0

)
+(

−E · F + 〈X〉L1 · F + E · 〈Y 〉L1 + 〈C〉L1 + U1

)
= −E · F + X · F + E · Y + C =

−(X − A) · (Y −B) +X · (Y −B) + (X − A) · Y + A ·B = X · Y .
Security against corrupt P2 is easy to see since it gets no message and only gen-

erates a fresh matrix Beaver triplet of correct dimensions. Now, we prove secu-
rity against corruption of either P0 or P1. Party P0 receives 〈A〉L0 , 〈B〉L0 , 〈C〉L0 and
〈E〉L1 , 〈F 〉L1 . We note that all of these uniform random matrices because A,B are
uniformly chosen and fresh shares are generated of A,B,C. Also, the final output of
Pj, j ∈ {0, 1}, is a fresh random share of X · Y (as they have each been randomized
by random matrix Uj) and contain no information about X and Y .

2When we instantiate the functionality FDReLU using protocol ΠDReLU, we would ensure that the
conditions on the range of input to ΠDReLU are met.
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Select Share
Lemma A.6. Protocol ΠSS({P0, P1}, P2) in Algorithm 2 securely realizes FSS in the
FMATMUL-hybrid model.

Proof. We first prove the correctness of our protocol, i.e., z := ReconstL(〈z〉L0 , 〈z〉L1 ) is
x when α = 0 and y when α is 1. Note that w = y−x and from correctness of FMATMUL,
c = ReconstL(〈c〉L0 , 〈c〉L1 ) = α ·w = α ·(y−x). And finally, z = x+c = (1−α) ·x+α ·y.
Hence, correctness holds.

To argue security, first observe that P2 learns no information from the protocol
(as FMATMUL({P0, P1}, P2) provides outputs only to P0 and P1). On the other hand,
Pj, j ∈ {0, 1}, only learn fresh shares of the outputs in Step 2 and hence any informa-
tion learned by either party can be perfectly simulated through appropriate shares
of 0 (over ZL). Finally, Pj outputs a fresh share of the output in Step 3 as they are
randomized by uj.

Share Convert
Proof of Lemma 3.1: We have already seen correctness. To see the security,
first observe that the only information that P2 sees is x = a + r (over ZL) and η′.
Since r $←− ZL and is not observed by P2, we have that x is uniform over ZL and so

information sent to P2 can be simulated by sampling x $←− ZL and sending shares of
x from Pj to P2 for j ∈ {0, 1}. Next, η′′ is a random bit not observed by P2 and thus,
η′ is a uniform random bit to P2. Hence, η′ can be perfectly simulated.

Finally, the only information that P0 and P1 observe are fresh shares of the fol-
lowing values: ∀i ∈ [ℓ], x[i], δ, and η′ that can be perfectly simulated by sharing 0.
The outputs of P0 and P1 are fresh shares of a over ZL−1 as they are randomized
using u0 and u1 respectively.

Division
Lemma A.7. Protocol ΠDIV({P0, P1}, P2) in Algorithm 8 securely realizes FDIV in the
(FDReLU,FMATMUL)-hybrid model when y 6= 0.

Proof. We first prove the correctness of our protocol, i.e., q := ReconstL(〈q〉L0 , 〈q〉L1 ) =
bx/yc. Our protocol mimics the standard long division algorithm and proceeds in ℓ
iterations. In the ith iteration we compute the q[i], the ith bit of q starting from the
MSB.

We will prove by induction and maintain the invariant: βi = q[i], ki = 2iβi,
ui = y ·

∑ℓ−1
j=i kj. Assume that invariant holds for i > m, then we will prove that it

holds for i = m. Note that zm = (x − um+1 − 2my). We note that βm or q[m] is 1
iff x − um+1 > 2my, that is, when ReLU′(zm) = 1. By correctness3 of FDReLU, βm =

3When we instantiate the functionality FDReLU using protocol ΠDReLU, we would ensure that the
conditions of Lemma A.3 are met.
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ReconstL(〈βm〉L0 , 〈βm〉L1 ) = ReLU′(zm). Next by correctness of FMATMUL, km = βm2
m

and vm = βm · 2my = kmy. Hence, um = um+1 + vm = y ·
∑ℓ−1

j=m kj.
To argue security, first observe that P2 learns no information from the protocol

(as both FDReLU({P0, P1}, P2) and FMATMUL({P0, P1}, P2) provide outputs only to P0

and P1). Now, Pj, j ∈ {0, 1}, only learn fresh shares of the outputs in Step 4, 5,
and 6 and hence any information learned by either party can be perfectly simulated
through appropriate shares of 0 (over ZL). Finally, Pj outputs a fresh share of the
final output in Step 9 as they are randomized by sj.

Maxpool
Lemma A.8. Protocol ΠMP({P0, P1}, P2) in Algorithm 9 securely realizes FMAXPOOL
in the (FDReLU,FSS)-hybrid model.

Proof. We first prove maxn := ReconstL(〈maxn〉L0 , 〈maxn〉L1 ) stores the maximum value
of the elements {xi}i∈[n] and indn := ReconstL(〈indn〉L0 , 〈indn〉L1 ) stores the index of
maximum value. This establishes the correctness of the protocol.

We will prove this by induction and will maintain the invariant that maxi holds
the value of max(x1, . . . , xi) and indi holds a value of k s.t. maxi = xk. It is easy to
see that this holds for i = 1. Suppose this holds for i = m − 1. Then we will prove
that it holds for i = m. In Step 3, we calculate wm = xm − maxm−1. By correctness
of FDReLU, βm = ReLU′(wm). That is, βm = 1 iff xm > maxm−1. Next, by correctness
of FSS, maxm is maxm−1 if βm = 0 and xm otherwise. In Step 6, we compute shares of
km = m. In Step 7, by correctness of FSS, indm = indm−1 if βm = 0 and m otherwise.
This proves correctness.

To argue security, first observe that P2 learns no information from the protocol
(as FDReLU({P0, P1}, P2) and FSS({P0, P1}, P2) provide outputs only to P0 and P1).
Now, Pj, j ∈ {0, 1}, only learn fresh shares of the values βi,maxi, indi and hence any
information learned by either party can be perfectly simulated through appropriate
shares of 0 (over ZL). Finally, Pj outputs a fresh share of the final output in Step 9
as the respective shares are randomized by uj and vj.

Derivative of Maxpool
We provide a proof of correctness and security of Algorithm 10 followed by the general
case algorithm.

Lemma A.9. Πn1×n2DMP({P0, P1}, P2) in Algorithm 10 securely realizes FDMAXPOOL
in the FMAXPOOL-hybrid model.

Proof. Let k∗ be the index of the maximum value and Er denote the unit vector
with 1 in the rth position and 0 everywhere else. For correctness, we show that
ReconstL(〈D〉L0 + U0, 〈D〉L1 + U1) = Ek∗ in Algorithm 10.

From the correctness of FMAXPOOL, we have that P0 and P1 hold shares of indn

(which is the index of the maximum value). P2 receives 〈indn〉L0 + r and 〈indn〉L1 from
P0 and P1 respectively and reconstructs t = indn + r mod L and then computes k =
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t mod n. P2 provides P0 and P1 with shares 〈E〉L0 and 〈E〉L1 that reconstruct to Ek.
Now, observe that k = ((indn + r) mod L) mod n. Let g = r mod n. Since n | L, we
have that k = (indn+g) mod n. Now, let shares 〈E〉Lj = (〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ).
In this, 〈Ek〉L0 and 〈Ek〉L1 reconstruct to 1, while all other k′ 6= k reconstruct to 0.
Since 〈D〉Lj = (〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · , 〈E(n−1−g mod n)〉Lj ), 〈D(k−g) mod n〉L0
and 〈D(k−g) mod n〉L1 alone will reconstruct to 1 with all other indices reconstructing
to 0. Since (k− g) mod n = indn mod n, we have that 〈D〉L0 and 〈D〉L1 reconstruct to
Ek∗ , hence proving the statement.

To argue security, first observe that P0 and P1 obtain shares of indn from the call
to FMAXPOOL. Now, since r is uniformly random in ZL, P2 learns no information from
shares 〈k〉L0 and 〈k〉L1 (which reconstruct to indn+r). Finally, Pj, j ∈ {0, 1}, only learn
fresh shares of the values E(indn+r) mod n and hence any information learned by either
party can be perfectly simulated through appropriate shares of 0 (over ZL). Finally,
Pj outputs a fresh share of the final output in Step 5 as the shares are randomized
by U0 and U1.

Derivative of Maxpool in the general case. We first observe that this function
can be computed using steps similar to 6 & 7 from Algorithm 9. The idea is for
the parties to invoke FSS({P0, P1}, P2) sequentially with shares of the unit vector
representing the current maximum. Let Ek, k ∈ [n], denote the unit vector of length
n with 1 in its kth position and 0 everywhere else. E0 denotes the all-zero vector.
Details are presented in Algorithm 19.

Algorithm 19 Derivative of Maxpool ΠDMP({P0, P1}, P2):
Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], respectively.
Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], respectively, where zi = 1, when

xi = Max({xi}i∈[n]) and 0 otherwise.
Common Randomness: P0 and P1 hold shares of 0 over Zn

L denoted by U0 and
U1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and 〈DMP1〉Lj = Ej.
2: for i = {2, . . . , n} do
3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj − 〈maxi−1〉Lj
4: P0, P1, P2 call FDReLU({P0, P1}, P2) with Pj, j ∈ {0, 1}, having input 〈wi〉Lj

and P0, P1 learn 〈βi〉L0 and 〈βi〉L1 , respectively.
5: P0, P1, P2 call FSS({P0, P1}, P2) with Pj, j ∈ {0, 1} having input

(〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj ) and P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , respectively.
6: For j ∈ {0, 1}, Pj sets 〈Ki〉Lj = Ej·i.
7: P0, P1, P2 call FSS({P0, P1}, P2) with Pj, j ∈ {0, 1} having input

(〈βi〉Lj , 〈DMPi−1〉Lj , 〈Ki〉Lj ) and P0, P1 learn 〈DMPi〉L0 and 〈DMPi〉L1 , respectively.
8: end for
9: For j ∈ {0, 1}, Pj outputs 〈DMPn〉Lj + Uj.

Lemma A.10. Protocol ΠDMP({P0, P1}, P2) in Algorithm 19 securely realizes
FDMAXPOOL in the (FDReLU,FSS)-hybrid model.
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Proof. For correctness, we show that ReconstL(〈DMPn〉L0+U0, 〈DMPn〉L1+U1) = Ek∗ in
Algorithm 19. This proof is nearly identical to the proof of correctness of Algorithm 9.
As before, we prove this by induction and will maintain the invariant that maxi holds
the value of max(x1, . . . , xi) and now show that DMPi holds the value Ek for k s.t.
maxi = xk. It is easy to see that this holds for i = 1. Suppose this holds for
i = m− 1. Then we will prove that it holds for i = m. Now, in Step 3, we calculate
wm = xm − maxm−1. By correctness of FDReLU, βm = ReLU′(wm). That is, βm = 1
iff xm > maxm−1. Next, by correctness of FSS, maxm is maxm−1 if βm = 0 and xm
otherwise. In Step 6, we compute shares of km = Em. In Step 7, by correctness of
FSS, DMPm = DMPm−1 if βm = 0 and Em otherwise. This proves correctness.

To argue security, first observe that P2 learns no information from the protocol (as
FDReLU({P0, P1}, P2) and FSS({P0, P1}, P2) provide outputs only to P0 and P1). Now,
Pj, j ∈ {0, 1}, only learn fresh shares of the values βi,maxi,DMPi, and hence any
information learned by either party can be perfectly simulated through appropriate
shares of 0 (over ZL). Finally, Pj outputs a fresh shares of the final output in Step 9
as the shares are randomized by U0 and U1.

A.3 Privacy against Malicious Adversary
In this section, we show that all our protocols described in Section 3.2 as well as pro-
tocols for general NNs obtained by stitching these together satisfy stronger a security,
namely, privacy against a malicious server in the client-server model (formalized by
[6]). As was already pointed out by Araki et al. [6], this can only be achieved when
the servers receive no information about the output of the protocol. Formally, we
show that, for any malicious server, for any two inputs of the honest clients (holding
the data) the view of the server is indistinguishable.

First, intuitively, we show that views are identical with secure correlated random-
ness. This holds because in all our protocols, the incoming messages to a server are
either a fresh share of a value or can be generated using a uniformly random value
(e.g., incoming messages of P2 in private-compare protocol). Thus, irrespective of
what the adversary sends in each round, the view of a malicious server can be sim-
ulated using uniform randomness and is completely independent of the inputs being
used by the clients. Second, in the case when correlated randomness is generated us-
ing shared pseudo random function (PRF) keys, to argue security against malicious
P0, we rely on security of the PRF key shared between P1, P2 that is unknown to
P0. Using this, we show that incoming messages of P0 are computationally close to
uniform. It is critical that to argue security against a malicious P0 we do not rely
on security of PRF keys known to P0, i.e., shared keys between (P0, P1) or (P0, P2).
Hence, we do not need to use a malicious secure coin-tossing protocol to generate se-
cure keys between an adversary and an honest server. We only rely on the security of
the PRF key shared between two honest servers. Therefore, the exact same protocol
gives privacy against a single malicious server. Similar arguments can be made to
argue security against a malicious P1 or malicious P2.
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Appendix B

Falcon: Supplementary Material

We present a brief summary of various NN layers and their equations. NNs, in
particular CNNs, form the state-of-the-art techniques for image classification. The
operation of NNs is most widely based on stochastic gradient descent and usually
iterates over the following three components: a forward pass, a backward pass, and
a parameter update phase.

An NN architecture is defined by the combination of layers that compose the
network. Various types of layers such as convolution, fully-connected, pooling layers,
and activation functions are used in different combinations to form the network. In the
training phase, an NN takes in a batch of inputs and outputs “a guess” (forward pass).
The ground truth is then used to compute errors using chain rule (back-propagation)
and finally update the network parameters (update phase). In the inference phase,
the output of the forward pass is used for prediction purposes. Below we look at the
various components required by state-of-the-art NNs.

Our general framework supports the following types of layers: convolutional, fully-
connected, pooling layers (max and mean pooling), normalization layers, and the
ReLU activation function. Together these enable a vast majority of networks used
in the ML literature. In the forward pass, each layer takes in an input from the
previous layer and generates the output (input for the following layer) using learnable
parameters such as weights, biases, etc. The final layer output is used to then compute
the loss using a loss function (such as cross-entropy, mean squared etc.). In the
backward pass, the final layer loss is propagated backwards through each layer using
the chain rule. Finally, each layer uses the associated loss to update its learnable
parameters. Below we look at each layer in detail. We use Einstein tensor notation [45]
with ϵab to denote the Kronecker Delta (to avoid confusion with the error δ) to describe
each layer.

B.1 Convolutional Layer
The input to a convolutional layer is a 4D tensor Rwin,hin,Din,B where win, hin are the
width and height of the input, Din is the number of input filters, and B is the batch
size. The hyper-parameters are the number of output filters Dout, the filter size
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F , the stride S and the amount of zero padding P . The output of the layer is
another 4D tensor Rwout,hout,Dout,B where wout = (win − F + 2 ∗ P )/S + 1 and hout =
(hin − F + 2 ∗ P )/S + 1. The weights are 4D tensors in RF,F,Din,Dout and biases are a
vector in RDout .

The forward pass is simply a convolution between the inputs activation and the
weights plus the bias. The backward pass as well as the update equations are also
convolutions which can all be implemented as matrix multiplications. We use the
following notation: activations are represented by al and indexed by the layer number
l ∈ {1 . . . , L}, δl represents ∂C

∂al
, the error of layer l, and weights and biases are

respectively represented by w and b. Dimension variables are: α ∈ {1, . . . , win}, β ∈
{1, . . . , hin}, r ∈ {1, . . . , Din}, d ∈ {1, . . . , Dout}, b ∈ {1, . . . , B}, x ∈ {1, . . . , wout}, and
y ∈ {1, . . . , hout}

alx,y,d,b = wp,q,r,d · al−1
(xS−P+p),(yS−P+q),r,b + bd (B.1a)

δl−1
α,β,r,b = δlx,y,d,b · w(α+P−xS),(β+P−yS),r,d (B.1b)
∂C

∂wp,q,r,d

= al−1
(xS−P+p),(yS−P+q),r,b · δ

l
x,y,d,b (B.1c)

∂C

∂bd
= δlx′,y′,d,b′ · ϵxx′ϵyy′ϵbb′ (B.1d)

Eq. B.1a is used for the forward pass, Eq. B.1b is used for back-propagation, and
Eqs. B.1c, B.1d are used for updating layer parameters.

B.2 Fully-Connected Layer
The input to a convolutional layer is a matrix in Rcin,B where B is the batch size. The
layer is defined by the number of input and output channels cin, cout. The output of
the layer is a matrix in Rcin,B. The weights are a matrix in Rcin,cout and biases form a
vector of size Rcout .

The forward pass is a matrix multiplication of the input matrix with the weights
matrix and bias added. The backward pass as well as the update equations require
matrix multiplications. Using the notation as in the convolutional layer, the equations
defining the fully-connected layer are described as follows:

aly,b = wp,y · al−1
p,b + by (B.2a)

δl−1
x,b = δly,b · wx,y (B.2b)

∂C

∂wp,q

= al−1
p,b · δ

l
q,b (B.2c)

∂C

∂by
= δly,b′ · ϵbb′ (B.2d)
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Eq. B.2a is used for the forward pass, Eq. B.2b is used for back-propagation, and
Eqs. B.2c, B.2d are used for updating layer parameters.

B.3 Pooling Layer
The input to a pooling layer (specifically Maxpool) is a 4D tensor Rwin,hin,Din,B where
win, hin are the width and height of the input, Din the number of input filters, and
B the batch size. The hyper-parameters are the filter size F and the stride S. The
output of the layer is another 4D tensor Rwout,hout,Din,B where wout = (win − F )/S + 1
and hout = (hin − F )/S + 1. There are no learnable parameters as the output is a
fixed function of the input.

The forward pass is max operation over the filter and can be implemented using
sequential comparisons. The backward pass requires a matrix multiplication with
the derivative of Maxpool (which is a unit vector with 0’s everywhere except at the
location of the argmax). For optimization, we compute this while computing the
Maxpool in the forward pass. Since pooling layers do not introduce any parameters,
there is no parameter update required for this layer.

alx,y,d,b =

(
max
p,q

al−1
xS+p,yS+q,d′,b′

)
· ϵdd′ϵbb′ (B.3a)

δl−1
α,β,r,b =

(
δlx,y,r,b ⊗ fxS+p,yS+q,r′,b′

)
· (B.3b)

ϵrr′ϵbb′ϵα(xS+p)ϵβ(yS+q) (B.3c)

Here, f denotes the derivative of the Maxpool function. Eq. B.3a governs the
forward pass and Eq. B.3c governs the back-propagation.

B.4 Normalization Layer
Normalization is typically applied to the output of the first few layers for improved
performance on two fronts – stability and efficiency of training. Activations are nor-
malized across a batch by subtracting the mean and dividing by the standard devia-
tion. Finally, these normalized inputs are then scaled using two learnable parameters
γ, β.
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µb =
∑
α,β,r

al−1
α,β,r,b (B.4a)

σ2
b =

1

m

∑
α,β,r

(al−1
α,β,r,b − µb)

2 (B.4b)

zl−1
α,β,r,b =

(al−1
α,β,r,b − µb)√
σ2
b + ϵ

(B.4c)

alα,β,r,b = γzl−1
α,β,r,b + β (B.4d)

where m is the size of each batch. We set ϵ = 2−10. Eqs. B.4a-B.4d form the
forward pass of the batch norm layer. The back-prop and update parameters are
simply matrix multiplications and can be read off from the source code available at
https://github.com/snwagh/falcon-public.

B.5 ReLU Activation
Rectified Linear Unit (ReLU) defined as (x) = max(0, x) is one of the most popular
activation functions used in deep learning. It is applied to the output of most layers
and simply applies the ReLU function to each input. Hence, the input and output
both are matrices in Rsin,B. Since the output is a fixed function of the inputs, there
are no learnable parameters in this layer. The forward pass involves computing the
ReLU function on each input whereas the backward pass involves a matrix multipli-
cation with the derivative of ReLU function (which is 0 if the input is negative and
1 otherwise). There is no parameter update as there are no learnable parameters.

We use Stochastic Gradient Descent (SGD) to iteratively train the network to
learn the right set of parameter values. We use the cross entropy loss function for
training given by:

C = − 1

n

∑
b

∑
j

(
yj ln aLj,b + (1− yj) ln(1− aLj,b)

)
(B.5)

where n is the batch size. These above 5 layers can be used to implement a large
fraction of the NNs used in deep learning and specifically in computer vision.
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Appendix C

Ponytail: Supplementary Material

C.1 Proofs for the Preprocessing Phase
The proof for the online phase ΠOnline, i.e., of Theorem 5.1 is identical to that of [39]
and we omit its extended discussion here. We present proof of the distributed de-
cryption protocols ΠDDec, i.e., of Theorem 5.3, later in this section. Finally, we begin
by presenting the proof for the preprocessing phase (Theorem 5.2).

C.1.1 Proof of Theorem 5.2
Figure C.1 presents the proof structure for proving malicious security of ΠPrep. The
ideal functionality for ΠPrep is presented in Figure C.2 and the simulator in Figure C.3.
The simulator runs a virtual copy of the protocol to simulate interactions with the

Figure C.1: Ponytail security proof works using a contrapositive argument: assuming there exists
an environment Z that can distinguish between the real-world (Figure 2.1a) and ideal-world
(Figure 2.1b), there exists an algorithm B that can use the distinguishing ability of such an

environment to distinguish between a FKeyGen generated key and a meaningless one.
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adversary. The ability to run FKeyGen and FRand allows the simulator to decrypt the
inputs of the corrupt parties (since it knows their secret keys). Finally, the simulator
then uses these extracted inputs to query the ideal functionality and obtain outputs
for all parties. To show that there exists no environment Z that can distinguish
between the real-world and the ideal-world, we use a contrapositive argument. In
other words, if there exists such an environment that can distinguish between these
two interactions with a non-negligible advantage (let ϵ denote this advantage), then
we show the existence of an algorithm B that can use the distinguishing ability of such
an environment to distinguish between a FKeyGen generated key and a meaningless one
(with advantage ≈ ϵ/2).

Such an algorithm B is given either a normal public key pk or a meaningless one
pk∗. It randomly decides to simulate either a real or an ideal world. To notationally
distinguish these from the real-world and ideal-world interactions presented to the
environment Z, we call the former realB, idealB and the latter realZ , idealZ . We next
prove the following two statements:
(a) (Claim 1) If the public key is meaningless, we show that the environment’s view

does not depend on whether B chooses realB or idealB.
(b) (Claim 2) However, on the other hand, if the public key is normal, we show that

realB simulated by B is statistically indistinguishable from realZ and idealB is
statistically indistinguishable from idealZ . In this case, Z can correctly guess
the random choice used by B, i.e., realB or idealB.

Combining these two observations, B can correctly guess whether it was given a
meaningless key or meaningful key by estimating how well the environment Z can
guess its own random choice realB or idealB. Since, B is given meaningful keys (with
probability 1/2), the environment guesses the choice of B with advantage ϵ within this
probability space. If that happens, B outputs a meaningful key otherwise it outputs
a meaningless key. It is easy to see that B succeeds with advantage ≈ ϵ/2. Finally,
note that Algorithm B works akin to Simulator S. However, such an Algorithm B
has two additional challenges compared to Simulator S, we present each followed by
a statistically indistinguishable workaround.
(a) (Challenge 1) B does not have access to secret keys (since it is given a public

key instead of being generated using FKeyGen).

• Extractions of the adversarial inputs is done using the knowledge extrac-
tors of zero-knowledge proofs. Note that Simulator B internally runs copies
of FRand and the distinguishing environment Z. This allows it to rewind
the adversary and issue challenges of its choice. This enables us to run the
extractors presented in the soundness argument in Sec. 5.2.

(b) (Challenge 2) B does not have access to the inputs of the honest parties.

• B simulates the proof using the honest verifier simulator presented in the
zero-knowledge argument in Sec. 5.2. The challenge matrix w of the ac-
cepting transcript can be output from FRand (as B controls the copy of
FRand).
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FPrep

Let A denote the set of indices corresponding to the corrupt parties. GenMAC is a
macro called multiple times by the functionality.

GenMAC(a,∆, α): This subroutine will be called multiple times by the functionality.
(A) Receive MAC shares {γi}i∈A from the adversary.
(B) Set γ(a)← α · a and γ ← γ(a) + ∆.
(C) Sample random values for γ(a)i r←− Zp for i /∈ A subject to γ =

∑n
i=1 γ(a)

i.
(D) Return γ(a)i to party Pi for i /∈ A.

Initialize: On input (init,p) from all the parties, do the following:

(A) Receive share αi from the adversary for i ∈ A and sample αi r←− Zp for each
i /∈ A. Set α← α1 + . . .+ αn (mod p).

(B) Wait for Ok or Abort from the adversary. If the adversary sends Abort, send
Abort to all parties and abort otherwise send αi to party Pi.

Authenticated Singles: On receiving input (Authenticated Singles) from all parties,
do the following:

(A) Wait for Ok or Abort from the adversary. If the adversary sends Abort, send
Abort to all parties and abort. Otherwise choose random values rik ∈ Zp for
i /∈ A and send them to Pi for all i /∈ A.

(B) For each corrupt party Pi, i ∈ A, the adversary specifies a share ri.
(C) The environment specifies MAC errors ∆k. Let rk =

∑
i r

i
k.

(D) Run the Macro GenMAC(rk,∆k, α).

Matrix Triples: On receiving input (Matrix Triples, d1, d2, d3) from all parties, do the
following:

(A) Wait for Ok or Abort from the adversary. If the adversary sends Abort,
send Abort to all parties and abort. Otherwise choose random matrices
Ai ← U(Rp)

d1×d2 and Bi ← U(Rp)
d2×d3 .

(B) For each corrupt party Pi, i ∈ A, the environment specifies shares Ai ←
U(Rp)

d1×d2 , Bi ← U(Rp)
d2×d3 , and Ci ← U(Rp)

d1×d3 .
(C) The environment specifies the MAC errors ∆A,∆B, and ∆C .
(D) Set A =

∑
iA

i, B =
∑

iB
i, and C = A×B + δAB.

(E) For each honest party Pi, i /∈ A, randomly choose Ci subject to C =
∑

iC
i.

(F) Run Macros GenMAC(A,∆A, α),GenMAC(B,∆B, α), and GenMAC((A ×
B),∆C , α).

Figure C.2: Ideal functionality for ΠPrep
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SPrep

Sext(cm): This subroutine will be called multiple times by the simulator to extract the
error ∆ introduced by ΠDDec. The simulator uses SDDec as a sub-routine to extract
∆. In particular, the simulator has access to m as well as the final output m′ and sets
∆ = m′ −m (as it runs its own FKeyGenDec)

Initialize:

(A) The simulator performs initialization steps of ΠPrep. A call to simulated
FKeyGen is made and pk, sk are locally stored.

(B) Simulator decrypts all encrypted ciphertexts and obtains α1, . . . , αn.

Authenticated Singles:

(A) Simulator performs step 1,2 as per protocol and decrypts every broadcast
ciphertext to obtain rik.

(B) Step 3 is performed as per the protocol setting ∆k ← Sext(crk·α).
(C) Call Authenticated Singles on FPrep using rik at step 2 and ∆k at step 3.

Matrix Triples:

(A) Simulator performs step 1,2 as per protocol and decrypts every broadcast
ciphertext to obtain Ai

jk and Bi
kl (using σ−1 and τ−1).

(B) Steps 3, 4, 5 are performed as per protocol and generate ∆Ajk
← Sext(cAjk·α)

and ∆Bjk
← Sext(cBjk·α).

(C) Compute steps 6, 7 as per the protocol and compute δCjl
← Sext(cCjl

).
(D) Compute steps 8 as per the protocol and compute ∆Cjl

← Sext(cCjl·α).
(E) Execute steps 9, 10 as per protocol.
(F) Call Matrix Triples in FPrep with inputs Ai, Bi where Ai is a matrix formed

by padding blocks Ai
jk appropriately and Bi is a matrix formed by padding

Bi
kl appropriately in step 2, inputs∆A,∆B, and∆C in step 4, 7 and input δC

in step 5, where ∆A,∆B,∆C , and δC are formed by appropriately padding
∆Ajk

,∆Bkl
,∆Cjl

, and δCjl
respectively.

Figure C.3: Simulator for FPrep
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Other than these differences, B works exactly as Simulator S described in Figure C.3.
Finally, to complete the proof, we prove Claim 1 and Claim 2 above.

Proving Claim 1. If the key is meaningless, the encryptions contain statistically
no information about the encrypted values. Since the zero-knowledge proofs are
simulated and the outputs of ΠReshare are secret shared, the honest parties inputs are
not revealed to the environment.

Proving Claim 2. If the key is meaningful, B chooses either realB or idealB. In
idealB, the only differences between Simulator S and B are those presented in Chal-
lenge 1 and 2 above, the workarounds for which work with statistical indistinguisha-
bility from those of Simulator S. Similarly, in realB, B generates a statistically
indistinguishable view from the real protocol execution.

C.1.2 Proof of Theorem 5.3
Simulator SDDec for ΠDDec is described in Figure C.5 and the ideal functionality is
described in Figure C.4. To prove the security result, we need to show the following:

(a) (Part 1) The transcripts ti generated by the simulator (in the “internal run”)
and sent to the adversary are indistinguishable from the real-world transcripts.

(b) (Part 2) Extract δ and the outputs of the adversary to be able to send them to
the functionality FKeyGenDec.

(c) (Part 3) Finally, generate the correct distribution of the outputs.

Proving Part 1. To see this, note that the simulator behaves honestly in generating
ti for all parties except for one honest party Pj. Hence, we only need to show that
the distribution of tj when generated by the simulator is indistinguishable from an
honest generation of tj. Note that

tj − t̃j = (∆ · rj + vj + ej)− (∆ · rj + ej −
∑
i ̸=j

vi) (mod q)

=
∑
i

vi (mod q)

= ∆ ·m+ e

(C.1)

We use a hybrid approach to show that these distributions are indistinguishable. Let
tjh = t̃j+∆·m. Since rj is uniformly random in Rp and∆ = q/p, the distributions of tjh
and t̃j are statistically indistinguishable. Finally, since e ≤ ej ·2secdd , the distributions
of tj = tjh + e and tjh are statistically indistinguishable.

Proving Part 2. This is easy to see, the extraction is provided in Steps (F),(G) of
SDDec.
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FKeyGenDec

Upon receiving start, get (pk, sk)← KeyGen(). Send pk to adversary and store sk.

Distributed Key Generation:

(A) Receive the shares of the secret key sj from the adversary.
(B) Construct a complete set of shares {si}ni=1 consistent with the adversary’s

input and the secret key sk. Send pk to all the players and si to each honest
party Pi.

Distributed Decryption:

(A) “Adversary” sends δ and random shares m̃i for i ∈ A to the functionality.
(B) Upon receiving decrypt(cm, B) decrypt m← cm and store it.
(C) Generate m̃i for i /∈ A such that m+ δ =

∑
i m̃

i. Send m̃i for i /∈ A to the
honest parties.

Figure C.4: Functionality for distributed key generation and decryption

Proving Part 3. In the ideal simulation, the outputs of all parties are random
shares with the constraint that

∑
m̃i = m + δ where δ is as given in Step (G). On

the other hand, in the real simulation, the output is as given by ΠDDec, i.e., random
shares of b∆−1 · (

∑
i t

i)e −
∑

i r
i (mod p). From the real simulation, we know that

(
∑

i t
i) = ∆ · (m+

∑
i r

i) + (e+
∑

i e
i) and from the ideal simulation, we know that

(δ − 1/2) ·∆ ≤
∑
i

ei ≤ (δ + 1/2) ·∆ (C.2)

Hence, b∆−1 · (
∑

i t
i)e −

∑
i r

i (mod p) = m + δ when (e +
∑

i e
i) ≤ (δ + 1/2) · ∆.

But since e <<
∑

i e
i, this holds with overwhelming probability and that completes

the proof.

C.2 Additional Protocols and Functionalities
This section presents the following protocols and functionalities for the sake of com-
pleteness.

(A) Protocol for adding MACs ΠAddMacs (Figure C.6).
(B) Protocol for MAC check ΠMACCheck (Figure C.7).
(C) Protocol for online phase ΠOnline (Figure C.8).
(D) Ideal functionality FOnline (Figure C.9).
(E) Ideal functionality FRand (Figure C.10).
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SDDec

Key Generation: Key distribution stage.

(A) Simulator obtains pk and {ski}i∈A and internally sets random {ski}i/∈A such
that sk is a full vector of 0’s.

(B) Send pk to the adversary.

Distributed Decryption: Simulates distributed decryption

(A) Upon decrypt (cm, B), compute the value vi for all players except one honest
player P j .

(B) For each i ∈ A, on receiving the message ti from malicious party P i, it
computes unique ei = ti − vi (mod ∆) and ri = b∆−1 · (ti − vi)e so that
∆ri + ei = ti − vi.

(C) It samples rj ← U(Rp) and ej ← U(RB·2secdd ) and computes

t̃j = ∆ · rj + ej −
∑
i ̸=j

vi (mod q).

(D) For each honest player, it computes ti honestly.
(E) The simulator sends these ti for all i /∈ A, i 6= j, and t̃j to Adversary.
(F) For all i ∈ A, the simulator sets m̃i = −ri.
(G) The simulator sets

δ :=

⌊∑
i e

i

∆

⌉
(H) The simulator sends δ, and m̃i to the functionality FKeyGenDec.

Figure C.5: Simulator for distributed decryption.

ΠAddMacs

Usage: On public input ca (and cα generated during initialization phase), the protocol
generates shares γ(a)i.

AddMacs: All parties

(A) All parties set cα·a ← cα ⊠ ca.
(B) Parties run ΠDDec to generate γ(a)1, . . . γ(a)n ← DDec(cα·a).
(C) Output

(
γ(a)1, . . . γ(a)n

)
.

Figure C.6: Sub-protocol for adding MACs.

116



ΠMACCheck

Each party has inputs αi and (γ(a)j)i for j ∈ {1, 2, . . . , t}. All players have a public set
opened values {a1, a2, . . . , at}. The protocol either succeeds or aborts (if an inconsistent
MAC value is found)

(A) Parties call FRand to generate a random seed s.
(B) Players sample a random set of values {rj}tj=1 using s as a seed.
(C) Each player computes the following values

(a) Public value a =
∑t

j=1 rj · aj .
(b) Share γi =

∑t
j=1 rj · (γ(a)j)i.

(c) Share σi = γi − αi · a.

(D) Parties call FCommit with (Commit, σi) for i ∈ {1, 2, . . . , n}.
(E) Parties then call FCommit with (Open, σi) for i ∈ {1, 2, . . . , n} and all players obtain

{σi}ni=1.
(F) If σ1 + . . .+ σn 6= 0, players abort the protocol.

Figure C.7: The MAC check protocol verifies the consistency of a list of opened values
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ΠOnline

Initialize: The parties first invoke the preprocessing ΠPrep to get the shared secret
key JαK and verified cα = Enc(α), a sufficient number of the following correlated
random objects of appropriate dimensions:

(A) Matrix multiplication triples (JaK, JbK, JcK).
(B) Convolution triples (JxK, JyK, JzK).
(C) Multiplication triples (JaK, JbK, JcK).
Then the steps below are performed according to the computation circuit.

Input: To share party Pi’s input, all parties pick a fresh Authenticated SingleJaK from
the set of available ones and then the following is performed:

(A) JaK is opened to Pi.
(B) Pi broadcasts δ = xi − a.
(C) The parties compute JxK = JaK + δ using local computation.

Add: To add two shares JxK, JyK, parties locally compute Jx+ yK.
Matrix Multiply: To multiply two matrices JXK and JY K, with each dimension a

multiple of ysl, the parties do the following:

(A) Take a fresh matrix multiplication triple (JAK, JBK, JCK) from the available
set of appropriate dimensions.

(B) ϵ = JX −AK and δ = JY −BK are opened.
(C) Compute JZK = JCK + ϵ× JBK + JAK× δ + ϵ× δ.

Output: Parties perform MACCheck on all openings so far. If no party aborts, the
players open the output value JOutK and if MACCheck goes through, each receives
the output Out.

Figure C.8: The online phase for MPC
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FOnline

Initialize: On receiving (init, p) from all parties, the functionality stores the modulus
p and initializes an empty array Value[]. If the adversary sends abort, send abort
to all parties and abort.

Input: On input (input, id, x) from Pi and (input, id,⊥) from all other parties, with
fresh identifier id, set Value[id] =x.

Add: On input (Add, id1, id2, id3) with id1, id2 already defined, set
Value[id3] = Value[id1] + Value[id2].

Matrix Multiply: On input (Matrix Multiply, {idA
ij }, {idB

jk}, {idC
ik}) with appropriate

dimensions and OK from adversary, set Value[idC
ik] =

∑
j Value[idA

ij ] · Value[idB
jk]. If

adversary sends Abort, send the message abort to all parties and abort.

Output: On input (Output, id, i) from all the parties and Value[id] is defined, then

(A) Public output: If i = 0, send Value[id] to the adversary and wait for OK
or Abort. If adversary sends Abort, send Abort to all parties and abort. If
adversary sends OK, send Value[id] to all the parties.

(B) Private output (corrupt): If i 6= 0 and Pi is corrupt, then send Value[id] to
the adversary and wait for OK or Abort. If the adversary sends Abort, send
Abort to all parties and abort.

(C) Private output (honest): If i 6= 0 and Pi is honest, wait for the adversary
to send OK or Abort. If the adversary sends Abort, send Abort to all parties
and abort otherwise send Value[id] to party Pi.

Figure C.9: Ideal functionality for ΠOnline

FRand

Init: On input (Init, sid,F) from all parties set the sampling field F and wait for incoming
messages.

Random: On input (Random, sid) from all parties sample r ∈ F and send r to the
Simulator S. If S replies with Abort then send Abort to all parties. If the reply is
OK then output r to all parties.

Figure C.10: Functionality for jointly sampling a random public element in MPC
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Appendix D

Network Architectures

Layer Input Size Description Output
Fully-Connected Layer 28× 28 Fully-Connected layer 128
ReLU Activation 128 ReLU(·) on each input 128
Fully-Connected Layer 128 Fully-Connected layer 128
ReLU Activation 128 ReLU(·) on each input 128
Fully-Connected Layer 128 Fully-Connected layer 10
ReLU Activation 10 ReLU(·) on each input 10

Figure D.1: NN architecture from SecureML [85] for training over the MNIST dataset.

Layer Input Size Description Output
Window size 2× 2, Stride (2, 2),Convolution 28× 28× 1 Padding (0, 0), output channels 5 14× 14× 5

ReLU Activation 14× 14× 5 ReLU(·) on each input 14× 14× 5
Fully-Connected Layer 980 Fully-Connected layer 100
ReLU Activation 100 ReLU(·) on each input 100
Fully-Connected Layer 100 Fully-Connected layer 10
ReLU Activation 10 ReLU(·) on each input 10

Figure D.2: NN architecture used in Chameleon [95] for training over the MNIST dataset.

120



Layer Input Size Description Output
Window size 5× 5, Stride (1, 1),Convolution 28× 28× 1 Padding (0, 0), output channels 16 24× 24× 16

ReLU Activation 24× 24× 16 ReLU(·) on each input 24× 24× 16
Max Pooling 24× 24× 16 Window size 2× 2, Stride (2, 2) 12× 12× 16

Window size 5× 5, Stride (1, 1),Convolution 12× 12× 16 Padding (0, 0), output channels 16 8× 8× 16

ReLU Activation 8× 8× 16 ReLU(·) on each input 8× 8× 16
Max Pooling 8× 8× 16 Window size 2× 2, Stride (2, 2) 4× 4× 16
Fully-Connected Layer 256 Fully-Connected layer 100
ReLU Activation 100 ReLU(·) on each input 100
Fully-Connected Layer 100 Fully-Connected layer 10
ReLU Activation 10 ReLU(·) on each input 10

Figure D.3: NN architecture used in MiniONN [77] for training over the MNIST dataset.

Layer Input Size Description Output
Window size 5× 5, Stride (1, 1),Convolution 28× 28× 1 Padding (0, 0), output channels 20 24× 24× 20

ReLU Activation 24× 24× 20 ReLU(·) on each input 24× 24× 20
Max Pooling 24× 24× 20 Window size 2× 2, Stride (2, 2) 12× 12× 20

Window size 5× 5, Stride (1, 1),Convolution 12× 12× 20 Padding (0, 0), output channels 50 8× 8× 50

ReLU Activation 8× 8× 50 ReLU(·) on each input 8× 8× 50
Max Pooling 8× 8× 50 Window size 2× 2, Stride (2, 2) 4× 4× 50
Fully-Connected Layer 800 Fully-Connected layer 500
ReLU Activation 500 ReLU(·) on each input 500
Fully-Connected Layer 500 Fully-Connected layer 10
ReLU Activation 10 ReLU(·) on each input 10

Figure D.4: The LeNet network architecture [76] for training over the MNIST dataset.
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Layer Input Size Description Output
Window size 11× 11, Stride (4, 4),Convolution 32× 32× 3 Padding (9, 9), output channels 96 11× 11× 96

ReLU Activation 11× 11× 96 ReLU(·) on each input 11× 11× 96
Max Pooling 11× 11× 96 Window size 3× 3, Stride (2, 2) 5× 5× 96

Normalization and linear scalingBatch Normalization 5× 5× 96 using learnable parameters γ, β 5× 5× 96

Window size 5× 5, Stride (1, 1),Convolution 5× 5× 96 Padding (1, 1), output channels 256 3× 3× 256

ReLU Activation 3× 3× 256 ReLU(·) on each input 3× 3× 256
Max Pooling 3× 3× 256 Window size 3× 3, Stride (2, 2) 1× 1× 256

Normalization and linear scalingBatch Normalization 1× 1× 256 using learnable parameters γ, β 1× 1× 256

Window size 3× 3, Stride (1, 1),Convolution 1× 1× 256 Padding (1, 1), output channels 384 1× 1× 384

ReLU Activation 1× 1× 384 ReLU(·) on each input 1× 1× 384
Window size 3× 3, Stride (1, 1),Convolution 1× 1× 384 Padding (1, 1), output channels 384 1× 1× 384

ReLU Activation 1× 1× 384 ReLU(·) on each input 1× 1× 384
Window size 3× 3, Stride (1, 1),Convolution 1× 1× 384 Padding (1, 1), output channels 256 1× 1× 256

ReLU Activation 1× 1× 256 ReLU(·) on each input 1× 1× 256
Fully-Connected Layer 256 Fully-Connected layer 256
ReLU Activation 256 ReLU(·) on each input 256
Fully-Connected Layer 256 Fully-Connected layer 256
ReLU Activation 256 ReLU(·) on each input 256
Fully-Connected Layer 256 Fully-Connected layer 10
ReLU Activation 10 ReLU(·) on each input 10

Figure D.5: The AlexNet network architecture [69] for training over the CIFAR-10 dataset.
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Layer Input Size Description Output
Window size 3× 3, Stride (1, 1),Convolution 32× 32× 3 Padding (1, 1), output channels 64 32× 32× 64

ReLU Activation 32× 32× 64 ReLU(·) on each input 32× 32× 64
Window size 3× 3, Stride (1, 1),Convolution 32× 32× 64 Padding (1, 1), output channels 64 32× 32× 64

ReLU Activation 32× 32× 64 ReLU(·) on each input 32× 32× 64
Max Pooling 32× 32× 64 Window size 2× 2, Stride (2, 2) 16× 16× 64

Window size 3× 3, Stride (1, 1),Convolution 16× 16× 64 Padding (1, 1), output channels 128 16× 16× 128

ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128
Window size 3× 3, Stride (1, 1),Convolution 16× 16× 128 Padding (1, 1), output channels 128 16× 16× 128

ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128
Max Pooling 16× 16× 128 Window size 2× 2, Stride (2, 2) 8× 8× 128

Window size 3× 3, Stride (1, 1),Convolution 8× 8× 128 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Window size 3× 3, Stride (1, 1),Convolution 8× 8× 256 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Window size 3× 3, Stride (1, 1),Convolution 8× 8× 256 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Max Pooling 8× 8× 256 Window size 2× 2, Stride (2, 2) 4× 4× 256

Window size 3× 3, Stride (1, 1),Convolution 4× 4× 256 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Window size 3× 3, Stride (1, 1),Convolution 4× 4× 512 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Window size 3× 3, Stride (1, 1),Convolution 4× 4× 512 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Max Pooling 4× 4× 512 Window size 2× 2, Stride (2, 2) 2× 2× 512

Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Max Pooling 2× 2× 512 Window size 2× 2, Stride (2, 2) 1× 1× 512
Fully-Connected Layer 512 Fully-Connected layer 4096
ReLU Activation 4096 ReLU(·) on each input 4096
Fully-Connected Layer 4096 Fully-Connected layer 4096
ReLU Activation 4096 ReLU(·) on each input 4096
Fully-Connected Layer 4096 Fully-Connected layer 1000
ReLU Activation 1000 ReLU(·) on each input 1000

Figure D.6: The VGG16 network architecture [102] for training over the CIFAR-10 dataset.
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